
FOR THE LOVE OF MESSAGE PASSING—CONVERTING AMP TO DMFT

MAX LOVIG

1. A Very Brief Introduction To Approximate Message Passing

Given “data” W ∈ Rn×n, we want to consider an algorithm (zt, ut) of the following form given
intialization u1,

zt = Wut

ut+1 = f(zt).
(1.1)

Why could this algorithm be useful? Lets consider a simple application on deriving the semi-circular
distribution [Yang 20-Tensor Programs 3]. Let W ∼ GOE(n) (eesentially a symmetric Gaussian
matrix with element-wise variance 1/n).
Hutchinson’s Trick: Given a matrix A ∈ Rn×n and g ∼ N (0, In), we have that

E[g⊤Ag] = Tr(A).

So, we can look at calculating the moments of the spectrum of W in an algorithmic way by running
(1.1) for t iterations with f = Id and u0 = g and invoking a.s. limits to get that

µt = g⊤ut
a.s.→ E[λ(W)t].

Repeating this for all finite t and then invoking that compact support implies uniqueness of a
distribution in terms of moments, we can hopefully recover the semi-circle distribution so long as
we canb asymptotically track the iterates of (1.1).
Unfortunately (at least for now), we can’t do this immediately for the following reason: Say we have
already calculated z1, u2 (since we are using f = Id these objects are identical). A trivial exercise is
to prove that element-wise (z1)i ∼ N (0, ∥u1∥2

2) up to some asymptotically vanishing error.
Ok, simple enough, now lets calculate z2 = W 2u1. There is an initial issue, the matrix W 2 is not
of simple Gaussian form meaning we need to utilize some cumbersome central limit theorem type
arguments (yucky).
After this realization, a natural observation is to instead write z2 = Wz1 and condition on z1, u1
(meaning we condition on the event that z1 = Wu1). This still causes problems since these
dependencies introduce correlations as the second iterate (conditionally) is of value (where W̃ is an
i.i.d. copy),

z2 = Wz1 = WPu1z1 + P ⊥
z1WP ⊥

u1z1 = Wu1u⊤
1 z1/∥u∥2︸ ︷︷ ︸
(A)

+ (I − z1z⊤
1 /∥z1∥2)W̃ (I − u1u⊤

1 /∥u∥2)z1︸ ︷︷ ︸
(b)

,

we then have that, up to a small vanishing error, that

(A) = u⊤
1 z1

∥u∥2 z1

Date: September 26, 2025.
1

2

(B) ≈ N (0, ∥z1∥2).

The equation for (B) comes from the fact that the contribution of W̃ into the row-space of z1 and
columns space of u1 is op(1). Then as a final step we have that (A) = 1

n
u⊤

1 z1
1
n

∥u1∥2 z1 = b1z1. This all
leads to

z2 ≈ N (0, ∥z1∥2) + b1z1.

The correlations of the type b1z1 will build over iterations and become (for now) very difficult to
track in a convenient way.
So, how can we fix this? Let remove the bz terms iteratively in out algorithm, note for a general
choice of z this takes the form,

zt = Wut − btut−1

ut+1 = f(zt).
(1.2)

Iteration (1.2) is the famed Approximate Message Passing Algorithm in its simplest form. The high
dimensional limit as n → ∞ then allows us to construct variables z̄t ∼ N (0, 1

nE[f(z̄t−1)⊤f(z̄t−1)])
and have a flavor of concentration bounds, the strongest of which takes form in either [Reeves
25-Dimension-Free Bounds] and [Lovig et al 25-On Universality] which is of the form.

Theorem 1.1. Under a joint coupling of zt and z̄t denoted by P

P(∥zt − z̄t∥2 ≥ CD logD(n)) ≤ 1
nD

.

Remark 1.2. As ∥zt∥, ∥z̄t∥ = Θ(
√

n), this is a rather strong result in terms of the concentration in
the difference of our AMP algorithm and the state evolution variables.

Example 1.3. Consider the random matrix A = λ
nxx⊤ + W where W is a GOE matrix, then we

consider the algorithm
zt = Aut − btut−1, ut+1 = f(zt),

we can rewrite this algorithm as,

zt = Wut − btut−1, ut+1 = f(zt + λ

n
xx⊤u1).

The, using the above state evolution results we have that

zt ∼ N
(

0,
1
n

f(zt−1 + λx
x⊤ut−1

n
)⊤f(zt−1 + λx

x⊤ut−1
n

)
)

.

Further assuming that xi ∼ P independently, f is a seperable function (f(z) = (f̃(z1), . . . , f̃(zn))
and x⊤ut/n → µt

a.s.→ E[Θf(zt−1 + λµt−1Θ)], then we get the well known state evolution statement

zt ∼ N
(
0,E[f(zt−1 + λΘµt−1)2]

)
.

The above result is sufficient to understand the algorithmic limits of recovery for the Z2-Syncronization
problem.

Before introducing the GFOm method, we leave a more advanced form of AMP and its state
evolution here for reference,

Theorem 1.4. Consider the algorithm,
zt = Wut −

∑
s<t

btsut−1

ut = ft(u1:t).
(1.3)

3

Then when W is GOE and ft satisfies some mild regularity conditions then,

z1:t ≈ N (0, Σt),

where (Σt)r+1,s+1 = 1
nE[fr(Z1:r)⊤fs(Z1:s)].

2. General First Order Methods

Returning to our algorithm (1.1) for the Wigner matrix, we still don’t have a good description of
algorithms without the Onsager correction term.
Thankfully, a simple (yet powerful) trick is here to save us, we can always rewrite algorithm (1.1)
(in fact a version of this algorithm with history terms ala (1.3)) in the form,

zt = Wut −
∑
s<t

btsut−1

ut+1 = ft(zt +
∑
s<t

btsut−1).

This is an AMP algorithm with the functions f̂t(·) = ft(·+
∑

s<t btsut−s), and because the coefficients
bt,s only rely on the past history before time t and have deterministic almost sure limits then we
can apply AMP theory to a general algorithm of the form

zt = Wut

ut+1 = ft(z1:t),

by iteratively adding and removing higher time-order Onsager correction terms. This is the main
basis of the result in [Reeves 25] which given the following (slightly simplified) state evolution
statement for a General First Order Method.

Theorem 2.1. Consider the following algorithm

zt = Wft(z1:(t−1)) + Wf̆t(z1:(t−1)). (2.1)

For each t ∈ N we can construct random variable z̄t under a coupling P where, as n → ∞,

P(∥zt − z̄t∥ ≥ c
√

r) ≤ C ′e−r.

Where z̄t = mt + rt with,

mt = f̆t(z̄1:(t−1)) +
∑
s<t

bstfs(z̄1:(s−1))

bst = 1
n
E[divsft(z̄1:(t−1)]

r1:t ∼ N (0, Σ)

Σst = 1
n
E[fs(z̄1:(s−1))⊤ft(z̄1:t)]

where divs is the divergence on the argument z̄s.

Remark 2.2. To close our example of calculating the semi-circle law, if we choose ft = Id and f̆t = 0,
then we arrive at each mt being the t-th Catalan number, defining the moments of the semi-circle
law.

4

2.1. Extensions By Embedding. Often times, an algorithm may never fit exactly in the form of
(2.1). Fortunately, a majority of extensions for desired algorithms can be embedded into (2.1). The
most common example is the following type of analysis.
Rectangular AMP iterates: Consider a GFOM algorithm of the following form initialized at
v0 ∈ Rd×m,

zt = Xgt(v0:t) + ğt(z0:(t−1))

vt+1 = X⊤ft(z0:t) + f̆t(v0:t)

where X ∈ Rn×d, zt ∈ Rn×m, vt ∈ Rd×m, ft : Rn×m×(t+1) → Rd×m, gt : Rd×m×(t+1) → Rn×m,
ğt : Rn×m×(t+1) → Rn×m, f̆t : Rd×m×(t+1) → Rd×m are Lipschitz in all arguments.
First, we consider the single column version of (2.1), i.e.,

zt = Xgt(v0:t) − ğt(z0:(t−1)) (2.2)

vt+1 = X⊤ft(z0:t) − f̆t(v0:t)

where zt ∈ Rn, vt+1 ∈ Rd, where again, each function above is Lipschitz in all arguments. We
embed this algorithm into a symmetric version of GFOMs analyzed by ? and then derive the DMFT
equations for the above single column asymmetric GFOM.
Consider the symmetric GFOM model analyzed in ?, specifically

xt = Aht(x0:t−1) + h̆t(x0:(t−1)), (2.3)

where A ∈ R(n+d)×(n+d). Recall from above that we want to write (2.2) as the above symmetric
GFOM. To do so, we construct matrix A to have block structure

A =
√

n

n + d

[
C X

X⊤ D

]
∈ R(n+d)×(n+d),

where C and D are symmetric independent Gaussian matrices with off-digonal elements of variance
1/n and on-diagonal elements with variance 2/n. Further, we consider the initialization

x0 =
[

0
v0

]
.

Lemma 2.3. We aim to prove that there exists choices of (ht)t∈N such that [z0, . . . , zt] = (x2j−1[1 :
n])j∈[t+1] and [v0, . . . , vt+1] = (x2j [(n + 1) : (n + d)])j∈[t+1]∪{0}. Therefore, endowing the DFMT
equations of algorithm (2.3) to algorithm (2.2).

Proof. Consider the base case of the statement, i.e. proving that, x1[1 : n] = z0 and x2[(n + 1) :
(n + d)] = v1. Consider the functions,

h1(x0) =

√
n + d

n

[
0

g0(x0[(n + 1) : (n + d)])

]
and, h̆1(x0) =

[
ğ0(x0[(n + 1) : (n + d)])

0

]
,

then,

x1 =
[
Xg0(x0[(n + 1) : (n + d)]) + ğ0(x0[(n + 1) : (n + d)])

Dg0(x0[(n + 1) : (n + d)])

]
.

As x0[(n + 1) : (n + d)] = v0, then we have

x1[1 : n] = Xg0(v0) + ğ0(v0) = z0,

5

as desired. Next, given h2(x0, x1) =
√

n+d
n

[
f0(x1[1 : n])

0

]
and h̆2 =

[
0

f̆0(x0[(n + 1) : (n + d)])

]
, we

can use that x1[1 : n] = z0 and x0[(n + 1) : (n + d)] = v0 to show

x2 =
[

Cf0(x1[1 : n])
X⊤f0(x1[1 : n]) + f̆0(x0[(n + 1) : (n + d)])

]
=
[

Cf0(z0)
X⊤f0(z0) + f̆0(v0)

]
.

Therefore, x2[(n + 1) : (n + d)] = v1 as desired.
Now, using the inductive hypothesis, assume that (x2j [(n + 1) : (n + d)])j∈[t]∪{0} = v0:t and
(x2j−1[1 : n])j∈[t] = z0:(t−1). We now close the inductive loop by demonstrating that x2t+1[1 : n] = zt

and x2(t+1)[(n + 1) : (n + d)] = vt+1.
First, given

h2t+1(x0:2t) =

√
n + d

n

[0
gt((x2j [(n + 1) : (n + d)])j∈[t]∪{0})

]
and

h̆2t+1(x1:2t) =
[
ğt((x2j−1[1 : n])j∈[t])

0

]
,

we immediately see that

x2t+1 =
[
Xgt((x2j [(n + 1) : (n + d)])j∈[t]∪{0}) + ğt((x2j−1[1 : n])j∈[t])

Dgt((x2j [(n + 1) : (n + d)])j∈[t]∪{0})

]
=
[
Xgt(v0:t) + ğt(z0:(t−1))

Dgt(v0:t)

]
.

Therefore, x2t+1[1 : n] = zt. Next, given

h2(t+1)(x0:(2t+1)) =

√
n + d

n

[
ft((x2j+1[1 : n])j∈[t]∪{0})

0

]
and

h̆2(t+1)(x0:(2t+1)) =
[

0
f̆2(t+1)(([(n + 1) : (n + d)])j∈[t]∪{0})

]
,

we then have that

x2(t+1) =
[

Cft((x2j+1[1 : n])j∈[t]∪{0})
X⊤ft((x2j+1[1 : n])j∈[t]∪{0}) + f̆2(t+1)(([(n + 1) : (n + d)])j∈[t]∪{0})

]
.

Similarly plugging in the inductive claim and using that x2t+1[1 : n] = zt gives, x2(t+1)[(n + 1) :
(n + d)] = vt+1, concluding the proof. ■

For simplicity in what follows, we define the functions,

h′
2t+1(x0:t) =

√
n + d

n

[0
gt((x2j [(n + 1) : (n + d)])j∈[t]∪{0})

]
h̆′

2t+1(x1:t) =
[
ğt((x2j−1[1 : n])j∈[t])

0

]

h′
2(t+1)(x0:t+1) =

√
n + d

n

[
ft((x2j+1[1 : n])j∈[t]∪{0})

0

]

h̆′
2(t+1)(x1:t+1) =

[
0

f̆2(t+1)((x2j [(n + 1) : (n + d)])j∈[t]∪{0})

]
.

Matrix Valued Iterates: Notice that the GFOM given in (2.1) only has iterates zt ∈ Rn and
vt+1 ∈ Rd. This is unlike our desired application where we may want zt ∈ Rn×m and vt+1 ∈ Rn×m.

6

This follows by considering a block-size time of t′ = t mod (m) (with the understanding that
0 7→ m) and we consider an indexing of time t by (⌊t/m⌋, t′) which then gives

z⌊t/m⌋,t′ = Xg⌊t/m⌋,t′(v1:⌊t/m⌋,1:m) + ğ⌊t/m⌋,t′(z1:(⌊t/m⌋−1),1:m)
v⌊t/m⌋+1,t′ = Xg⌊t/m⌋,t′(z1:⌊t/m⌋,1:m) + ğ⌊t/m⌋,t′(v1:⌊t/m⌋,1:m).

Both At Once: Using Lemma 2.3, we can now output the rigorous high dimensional DMFT
equations for algorithm (2.2),

z̄t = mz
t + rz

t

v̄t+1 = mv
t+1 + rv

t+1

where mz
t , r0:t ∼ N (0, Σt ⊗ Idn) and mv

t+1, r1:(t+1) ∼ N (0, Ωt+1 ⊗ Idd) are given by the recursive
construction.

rz
0:t ∼ N (0, Σt ⊗ In)

Σt[(t, i), (s, j)] = 1
n
E[⟨gt(v̄0:t)i, gs(v̄0:s)j⟩]

mz
t = ğt(z̄0:(t−1)) +

t−1∑
s=0

fs(z̄0:s)B⊤
t,s

Bt,s[a, b] = 1
n
E[divs

bgt−1(v̄0:(t−1))a]

rv
1:(t+1) ∼ N (0, Ωt+1 ⊗ Id)

Ωt+1[(t + 1), i), (s + 1), j)] = 1
n
E[⟨ft(z̄0:t)i, fs(z̄0:t)j⟩]

mv
t+1 = f̆t(v̄0:t) +

t∑
s=0

gs(v̄0:s)A⊤
t,s

At,s[a, b] = 1
n
E[divs

bft(z̄0:t)a].

3. Dynamical Mean Field Theory [Montenari, Urbani 25]

Dynamical Mean Field Theory Is Just A GFOM With A Gradient Flow Limit:
Consider the model

f̂(x) = 1
m

σ(Wx)a,

where [x⊤
1 , . . . , x⊤

n] ∈ Rn×d, W ∈ Rm×d and a ∈ Rm. We aim to understand the role of training
there parameters when n/d = α with n, d large and m constant. This training is done according to
η sized gradient descent steps on the empirical risk,

L = 1
2n

n∑
i=1

(f(xi) − yi)2.

Remark 3.1. Note, this following process can be easily extended to study other more general forms
of losses, included momentum and weight decay.

Step One: Writing a GFOM.

7

We need to write the pre-activation immediately after the linear layer and the subseqeuent training
steps in terms of the following algorithm:

zt = Xgt(w1:t) + ğt(w1:t)

wt+1 = X⊤ft(z1:t) + f̆t(z1:t).

The choice of ft and gt will be revealed in a moment. First, let’s consider the forward pass to the
preactivation. To find this value we calculate zt = Xwt where wt ∈ Rd×m is the GFOM iterate
corresponding to the t-th training step parameters.
Next, using a calculus trick, we can write ∂L

∂W = X⊤ ∂L
∂z , where z = Xw. We can then calculate this

derivative as
∂L
∂zα

i

= 1
n

(f̂(xα) − yα) 1
m

σ′(xαwi)ai.

Therefore, with vectorization of α written using ◦ in the superscript, we have that
∂L
∂zα

i

= 1
nm

(f̂◦ − y◦)aiσ
′(z◦

i).

Thus, letting ft be defined the row-wise seperable function, considering the parameteization η = nη,
we have that

ft(zα)i = − η

m
(f̂α − yα)aiσ

′(zα
i),

and f̆t(z1:t) = wt(z1:t) = wt, we can then write our network training as the GFOM,

zt = Xwt

wt+1 = X⊤ft(zt) + wt.

Step Two: Invoking GFOM theory.
In our case, with out choice of ft from the previous section, we arrive at the following high-dimensional
DMFT description of our dyanmics, taking form:

zt
Law=

t−1∑
s=0

fs(zs)B⊤
t,s + rz

t

wt+1
Law= wt +

t∑
s=0

wsA⊤
t,s + rw

t

where

[rz
1, . . . , rz

t] ∼ N (0, Σt ⊗ In)

Σt[(t, i), (s, j)] = 1
n
E[⟨(wt−1)i, (ws)j⟩]

[rw
1 , . . . , rw

t+1] ∼ N (0, Ωt+1 ⊗ Id)

Ωt+1[(t + 1, i), (s + 1, j)] = 1
n
E[⟨ft(zt)i, fs(zt)j⟩]

Bt,s[a, b] = 1
n
E[divs

b(wt−1)a]

At,s[a, b] = 1
n
E[divs

bft(zt)a].

We can then push the dynamics of the GFOM into the final layer weights by writing

(at+1)i = at,i − η

nm
(f̂◦

t − y◦)⊤σ′(z◦
t,i).

8

We now want to collapse this down to a low-dimensional DMFT system, In doing so we let the
following be replaced by the low-dimensional recursion:

z̄t
Law=

t−1∑
s=0

fs(z̄s)B̄⊤
t,s + r̄z

t

B̄t,t−1[a, b] = E[divt−1
b (w̄t−1)a]

r̄z
1:t ∼ N (0, Σ̄t)

Σ̄t[(t, i), (s, j)] = 1
n
E[(w̄t−1)i(w̄s)j]

w̄t+1
Law= w̄t +

t∑
s=0

w̄sĀ⊤
t,s + r̄w

t

Āt,s[a, b] = E[divs
bft(z̄t)a]

r̄w
1:t ∼ N (0, Ω̄t+1)

Ω̄t+1[(t + 1, i), (s + 1, j)] = 1
n
E[ft(z̄t)ifs(z̄s)j]

(at+1)i = ai − η

m
E[(f̂t(z̄t) − y)σ′(z̄t,i)].

And a further simplification can be made with

ft(z̄t)i = − η

m
(f̂t(z̄t) − y)aiσ

′(z̄t,i),

f̂(z̄t) = 1
m

m∑
i=1

aiσ(z̄t,i).

Thus,

z̄t,i
Law=

t−1∑
s=0

− η

m
Rs

∑
ℓ∈[m]

at
ℓσ

′(z̄t,ℓ)B̄t,s[i, ℓ] + (r̄z
t)i

Rt = 1
M

M∑
i=1

aiσ(z̄t,i) − y

B̄t,s[a, b] = E[divs
b(w̄t−1)a]

r̄z
1:t ∼ N (0, Σ̄t)

Σ̄t[(t, i), (s, j)] = E[(w̄t−1)i(w̄s)j]

w̄t+1
Law= w̄t +

t∑
s=0

w̄sĀ⊤
t,s + r̄w

t

Āt,s[a, b] = − η

m
E[divs

bRtaaσ′(z̄a)]

r̄w
1:t ∼ N (0, Ω̄t+1)

Ω̄t+1[(t + 1, i), (s + 1, j)] = η
at

ia
s
j

m2 E[RtRsσ′(z̄t,i)σ′(z̄s,j)]

(at+1)i = (at)i − η

m
E[Rtσ

′(z̄t,i)].

Now taking the limit η → 0 we arrive at a sequence of integro-differential equation tracking the
continious empirical risk gradient flow,

9

z̄t,i
Law= − 1

m

∑
ℓ∈[m]

∫ t

0
Rsas

ℓσ′(z̄t,s)E[divs
ℓ(w̄t−1)i] ds + (r̄z

t)i

(w̄t+1)i
Law= (w̄0)i − 1

m

∑
ℓ∈[m]

∫ t

0
(w̄s)ℓE[divs

ℓRta
t
iσ

′(z̄t,i)] + r̄w
s ds

Rt = 1
M

M∑
i=1

aiσ(z̄t,i) − y

(at+1)i = (a0)i − 1
m

∫ t

0
E[Rsσ′(z̄s,i)].

r̄z
1:t ∼ N (0, Σ̄t), Σ̄t[(t, i), (s, j)] = E[(w̄t−1)i(w̄s)j]

r̄w
1:t ∼ N (0, Ω̄t+1), Ω̄t+1[(t + 1, i), (s + 1, j)] =

at
ia

s
j

m2 E[RtRsσ′(z̄t,i)σ′(z̄s,j)].

The values of E[divs
ℓRta

t
iσ

′(z̄t,i)] and E[divs
ℓ(w̄t−1)i] can be defined self consistently using causality

and simple (yet tedious) derivatives or its can be simulated using Monte Carlo. An additional large
n limit can also be taken to arrive at a large network limit, although this large network limit is
mesoscopic comapred to n and d.

4. Where To Go From Here?

What do these algorithms have in common?
Consider the following problems:

(1) Let W ∼ GOE(n) what is the limiting law of the spectrum of W .
(2) Given observation A = (Ai,j)i,j∈[n] of the following form,

Ai,j ∼
{

Bern(pi,j) if σ(i) = σ(j)
Bern(qi,j) otherwise

.

The goal is to recover σ : [n] 7→ {−1, 1}.
(3) Given observation Y = |Xβ + ϵ| for a random design matrix

X ∈ Rn×d where Xi,j ∼ N (0, 1/n).
The goal is to recover β.

(4) Consider Glauber Dynamics on the max cut problem,
H(σ) = σ⊤Wσ,

where Wi,j = Wj,i ∼ Rad(1/2). What is the limiting energy achieved by the ground state,
i.e., maxσ H(σ).

(5) Consider the following neural network model

f̂(x) = 1
n

∑
i∈[n]

viσ(W MHSA(K, Q, V ; x)),

where W ∈ Rn×n is initialized at W0 ∼ N (0, 1/n) and (x, y) ∈ Rd+1 ∼ PX,Y and the model
is trained with ADAM on quadratic loss.

They all admit an analysis using message passing algorithms (AMP, GFOMs, DMFT,
Tensor Programs).

	1. A Very Brief Introduction To Approximate Message Passing
	2. General First Order Methods
	2.1. Extensions By Embedding

	3. Dynamical Mean Field Theory [Montenari, Urbani 25]
	4. Where To Go From Here?

