FOR THE LOVE OF MESSAGE PASSING—CONVERTING AMP TO DMFT

MAX LOVIG

1. A VERY BRIEF INTRODUCTION TO APPROXIMATE MESSAGE PASSING

Given “data” W € R™ "™ we want to consider an algorithm (z;,u;) of the following form given
intialization wuq,

Zt = Wut

utr1 = f(2t)-

(1.1)

Why could this algorithm be useful? Lets consider a simple application on deriving the semi-circular
distribution [Yang 20-Tensor Programs 3]. Let W ~ GOE(n) (eesentially a symmetric Gaussian
matrix with element-wise variance 1/n).

Hutchinson’s Trick: Given a matrix A € R"*" and g ~ N (0, I,), we have that
Elg" Ag] = Tr(A).

So, we can look at calculating the moments of the spectrum of W in an algorithmic way by running
(1.1) for ¢ iterations with f = Id and uy = g and invoking a.s. limits to get that

e =g ug ©3 ENV).

Repeating this for all finite ¢t and then invoking that compact support implies uniqueness of a
distribution in terms of moments, we can hopefully recover the semi-circle distribution so long as
we canb asymptotically track the iterates of (1.1).

Unfortunately (at least for now), we can’t do this immediately for the following reason: Say we have
already calculated z1,uy (since we are using f = Id these objects are identical). A trivial exercise is
to prove that element-wise (21); ~ N(0, ||u1|3) up to some asymptotically vanishing error.

Ok, simple enough, now lets calculate zo = W?2u;. There is an initial issue, the matrix W? is not
of simple Gaussian form meaning we need to utilize some cumbersome central limit theorem type
arguments (yucky).

After this realization, a natural observation is to instead write z9 = W27 and condition on 21, uq
(meaning we condition on the event that z; = Ww;). This still causes problems since these
dependencies introduce correlations as the second iterate (conditionally) is of value (where W is an
ii.d. copy),

29 =Wz =WP,, 21 + lelWPj‘lzl = VVuluszl/Hu||2 + (- zlle/HleQ)W(I — ululT/HuH2)z1,
(4) (b)

we then have that, up to a small vanishing error, that

uf 21

@) = e
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(B) ~ N (0, |z1]*)-

The equation for (B) comes from the fact that the contribution of W into the row-space of z; and

-
columns space of u; is op(1). Then as a final step we have that (4) = % qulluﬁle = b121. This all

leads to
29 RS N(O, ”21H2) + by21.

The correlations of the type b1z; will build over iterations and become (for now) very difficult to
track in a convenient way.

So, how can we fix this? Let remove the bz terms iteratively in out algorithm, note for a general
choice of z this takes the form,
2 = Wuy — byuy 1
U1 = f(2t)-
Iteration (1.2) is the famed Approximate Message Passing Algorithm in its simplest form. The high
dimensional limit as n — oo then allows us to construct variables z; ~ N (0, 2E[f(z,—1) " f(Z-1)])

and have a flavor of concentration bounds, the strongest of which takes form in either [Reeves
25-Dimension-Free Bounds| and [Lovig et al 25-On Universality] which is of the form.

(1.2)

Theorem 1.1. Under a joint coupling of z: and z; denoted by P
> 1
P(||2¢ — 22 > CplogP(n)) < 5

Remark 1.2. As ||z, ||zt|| = ©(y/n), this is a rather strong result in terms of the concentration in
the difference of our AMP algorithm and the state evolution variables.

Example 1.3. Consider the random matriz A = %l‘l‘—r + W where W is a GOE matriz, then we
consider the algorithm

2 = Aug — bpug_q, urr1 = f(2t),
we can rewrite this algorithm as,

A
2t = Wuy — byug 1, w1 = fz + ;IE&JTM)-

The, using the above state evolution results we have that

-
)Tf(th + )\ibx Zt_1)> .

xTut_l

1
2~ N (0, gf(ztA + Az

Further assuming that z; ~ P independently, f is a seperable function (f(z) = (f(z1),..., f(zn))
and xTug/n — py “3 E[Of(2¢-1 + Mug_10)], then we get the well known state evolution statement

2~ N (0, E[f (21 + 20p1)7]) .

The above result is sufficient to understand the algorithmic limits of recovery for the Zs-Syncronization
problem.

Before introducing the GFOm method, we leave a more advanced form of AMP and its state
evolution here for reference,

Theorem 1.4. Consider the algorithm,
2t = Wuy — Z bisui—1
s<t (13)
Ut = ft(ulzt)-



Then when W is GOFE and f; satisfies some mild regularity conditions then,
21t ~ N(Oa Et)a

where (St)ri1,501 = 2 B[fr(Z1) T fo(Z1:5)]-

2. GENERAL FIRST ORDER METHODS
Returning to our algorithm (1.1) for the Wigner matrix, we still don’t have a good description of
algorithms without the Onsager correction term.

Thankfully, a simple (yet powerful) trick is here to save us, we can always rewrite algorithm (1.1)
(in fact a version of this algorithm with history terms ala (1.3)) in the form,

zZt = Wut — Z btsut_l

s<t

w1 = filze + Y brsty—1).

s<t

This is an AMP algorithm with the functions f;(-) = fi(- 4+ Y4} brstis—s), and because the coefficients
by s only rely on the past history before time ¢ and have deterministic almost sure limits then we
can apply AMP theory to a general algorithm of the form

zZt = Wut
Ut41 = ft(let)7

by iteratively adding and removing higher time-order Onsager correction terms. This is the main
basis of the result in [Reeves 25] which given the following (slightly simplified) state evolution
statement for a General First Order Method.

Theorem 2.1. Consider the following algorithm
2 =W fi(z10-1) + W fi(216-1))- (2.1)
For each t € N we can construct random variable z; under a coupling P where, as n — 00,

P(||zt — zt|| > e/r) < Cle™".

Where zy = my + ¢ with,

my = ft(glz(tfl)) +3 batfs(Z1s-1)

s<t
1
bst = EE[dIV ft(Zr—1)]
T1.¢ N(O, 2)

1 _ _
Est — ZE[]&S(21:(5—1))Tft(21:t)]
where div® is the divergence on the argument Zs.

Remark 2.2. To close our example of calculating the semi-circle law, if we choose f; = Id and ft =0,
then we arrive at each m; being the ¢-th Catalan number, defining the moments of the semi-circle
law.
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2.1. Extensions By Embedding. Often times, an algorithm may never fit exactly in the form of
(2.1). Fortunately, a majority of extensions for desired algorithms can be embedded into (2.1). The
most common example is the following type of analysis.

Rectangular AMP iterates: Consider a GFOM algorithm of the following form initialized at
V0 € Rdxm,
z = X ge(vot) + ge(20:(-1))
v = X filzou) + ft(UO:t)
where X € RnXd, PRa= RnXm, v € Rde’ ft . Rnme(t—l—l) N Rde’ gi : RdeX(t-‘rl) N RnXm’

Gy o Rxmx(t41) _y goxm - f o Rdxmx(i41) _y RdXm gre [ipschitz in all arguments.
First, we consider the single column version of (2.1), i.e.,
zt = X gi(vo:t) — G1(20:(t-1)) (2.2)
verr = X fiz04) — fi(vou)
where 2z € R”, v.41 € R? where again, each function above is Lipschitz in all arguments. We

embed this algorithm into a symmetric version of GFOMs analyzed by 7 and then derive the DMFT
equations for the above single column asymmetric GFOM.

Consider the symmetric GFOM model analyzed in 7, specifically
y = Ahy(z0:-1) + he(o:(e-1)), (2.3)

where A € R(+d)x(+d) - Recall from above that we want to write (2.2) as the above symmetric
GFOM. To do so, we construct matrix A to have block structure

[ n JTC X (n+d) X (n+d)
A= n—l-al{XT D]eR ’

where C' and D are symmetric independent Gaussian matrices with off-digonal elements of variance
1/n and on-diagonal elements with variance 2/n. Further, we consider the initialization

- [t]

Lemma 2.3. We aim to prove that there exists choices of (ht)ien such that [z, ..., z) = (x2j-1[1 :
n))jeft+1] and [vo, .., vip1] = (zo5[(n + 1) : (n + d)])jer+1jugoy- Therefore, endowing the DFMT
equations of algorithm (2.3) to algorithm (2.2).

Proof. Consider the base case of the statement, i.e. proving that, z1[1 : n] = zp and xa[(n + 1) :
(n+ d)] = v1. Consider the functions,

n+d 0
ha(zo) = \/T [go<m0[(n +1): (n+ d)])}

and, hy () = F]O(ﬁo[(n + B) (n+ d)])} ,

then,
o [Xgo(xo[(n +1): (n+d)]) + Jo(xo[(n+1) : (n+ d)])]
! Dgo(zo[(n+1) : (n+d)]) '

As zo[(n+1) : (n+ d)] = vo, then we have
z1[1 : n] = Xgo(vo) + Go(vo) = 20,
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as desired. Next, given ho(zg, 1) = \/”Tﬁ
can use that xi[1 : n] = zp and z[(n + 1) : (n + d)] = vy to show

Cfoln 1 < n))
X7 folwa[1: ) + folzol(n +1) = (n+d))

Therefore, z3[(n + 1) : (n+ d)] = v; as desired.

folwrllen)] o 0
0 10 } and hg = lfo($0[(n+1) : (n+d)])1’ we

B C'folzo)_
X T fo(z0) + fo(vo) |

To =

Now, using the inductive hypothesis, assume that (zo;[(n + 1) : (n + d)])jeyu{oy = vo+ and
(z2j-1[1 : n])jel) = 20:(t—1)- We now close the inductive loop by demonstrating that ai41[1 : n] = 2
and Ty [(n+1) 1 (n+d)] = vy

First, given

n+d { 0 }
gt((25[(n +1) : (n + d)])jeguioy)

[ét((fﬁzj—l[é : n])je[t])} ’

hott1(xo2t) = -

and
7121&-5—1(331:215) =
we immediately see that

Xgt((w2i[(n+1) : (n + d)])jeguioy) + Ge((w25-1[1 : n])je[t])] _ [Xar(vor) + Ge(z0.(-1))

T = Dgi((x25[(n +1) : (n+ d)])jerguqop) - { Dgi(vo:) .

Therefore, za:11[1 : n] = 2. Next, given

n+d (1 4
h2(t+1)(~’00:(2t+1)) = {ft((mﬁl[ On])JE[t]U{O})]

n

and

R S |
2DV = f ([ +1) s (n+ D)) jeoge) |

we then have that

Torper) = Cfi((21(1 : ) jemuqoy) ‘
07X T fil(@ag L nD)seopy) + Joen (1) = (n -+ d)]) jernugoy)
Similarly plugging in the inductive claim and using that wa;11[1 : n] = 2 gives, xouqpy[(n + 1) :

(n 4 d)] = vey1, concluding the proof. [ |

For simplicity in what follows, we define the functions,

n+d [ 0 ]
ge((z25[(n +1) = (n + d)]) jemuqoy)

v a . 1 : .

By 1 (1) = {gt((mﬂ 1] nDJG[ﬂ)]

h +) =
2t+1(550.t) n

0

n+d Toi4+111:n|);
h/2(t+1)(x0:t+1) =\ [ft(( 2j+1 0 D]e[t]u{o})}

Py (@1e1) = | 5 ’
2(t4+1) \L1:t+1) = f2(t+1)((x2j[(n +1): (n+ d)])je[t}u{o}) '

Matrix Valued Iterates: Notice that the GFOM given in (2.1) only has iterates z; € R" and
Vpy1 € R%. This is unlike our desired application where we may want 2! € R and v;,, € R™*™,
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This follows by considering a block-size time of ¥ = ¢ mod (m) (with the understanding that
0 +— m) and we consider an indexing of time ¢ by (|¢/m],¢") which then gives
Alt/mlt = Xth/mJ,t’(Ulth/mJ,lzm) + .é\_t/mj,t’(le(l_t/mj—l),lzm)
Vlt/m]+1t = Xg[t/m],t’(zlzl_t/mj,lzm) + 91t/m) v (’Ulz\_t/mj,lzm)'

Both At Once: Using Lemma 2.3, we can now output the rigorous high dimensional DMFT
equations for algorithm (2.2),

2,5 = mf + T'tz
— ) v
Vi1 = My + T

where mj, ro.s ~ N(0,3; ® Id,) and m{, 1, 71,41y ~ N (0, Q41 ® Idg) are given by the recursive
construction.

g ~ N(0, 5 @ 1)

S4l(t 1), (5,)] = ~El{01(004)s, 95 (7))
t—1

mf = gt(EO:(tflﬂ + Z fs(EO:S)Bt—,rs
s=0

Bt,s[aa b] = %E[divzgt—l(ﬁ():(t—l))a]
My ~ N0, Qi1 ® 1)
uial(+1),), (5 + 1), )] = SE[fuGondi Fo(Goa)s)

t

mf_,_l = ﬁ(@o;t) + Z gs(,DO:S)A;s
s=0

Arslab] = %E[divi Fi(Zou)al.

3. DYNAMICAL MEAN FIELD THEORY [MONTENARI, URBANI 25|

Dynamical Mean Field Theory Is Just A GFOM With A Gradient Flow Limit:

Consider the model

fa) = —o(Wo)a

where [z],..., 2] € R™4 W € R™*?4 and a € R™. We aim to understand the role of training
there parameters when n/d = « with n,d large and m constant. This training is done according to
7 sized gradient descent steps on the empirical risk,

Remark 3.1. Note, this following process can be easily extended to study other more general forms
of losses, included momentum and weight decay.

Step One: Writing a GFOM.
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We need to write the pre-activation immediately after the linear layer and the subseqeuent training
steps in terms of the following algorithm:

2zt = Xgr(wit) + ge(wit)
Wiy = XTft(Zl:t) + ft(let)-

The choice of f; and g; will be revealed in a moment. First, let’s consider the forward pass to the
preactivation. To find this value we calculate z; = Xw; where w; € R¥>*™ is the GFOM iterate
corresponding to the ¢-th training step parameters.

Next, using a calculus trick, we can write % =X T%, where z = Xw. We can then calculate this

derivative as or
1 2 «a «a 1 1
— = —(f(z%) — —o' (x%w;)a;.
52 = ) =)o o
Therefore, with vectorization of a written using o in the superscript, we have that

oL _ 1 ro oy . . I(_0
920 (T = y)aio (2]).

Thus, letting f; be defined the row-wise seperable function, considering the parameteization n = nn,
we have that

/]’] A
fol2%)i = ——(f" = y“)aio’ (2f),
and ft(zlzt) = wy(z1.¢) = wy, we can then write our network training as the GFOM,
Zt = th

Wit1 = XTft(Zt) -+ wWy.

Step Two: Invoking GFOM theory.

In our case, with out choice of f; from the previous section, we arrive at the following high-dimensional
DMEFT description of our dyanmics, taking form:

t—1
L
7 = Z fs(zS)Bth + 7
s=0

t
Law T
Wiyl = Wi+ E wsAy g + 14
s=0

where
[rf,...,r7] ~N(0,%; ® I,)
. . 1
Zel(t,0), (s,9)] = ~E[((we-1)i, (ws);)]
[r111}7 SERE) T:ﬁﬂ-l] ~ N(O7 QtJrl X Id)
. , 1
Q[ +1,0), (s +1,9)] = ~E[(fe(ze)i, fs(20)5)]
1 s
B [a,b] = EE[dlvb(wt_l)a]
1.
Aas[a, b] = EE[dlvbft(Zt)a]'
We can then push the dynamics of the GFOM into the final layer weights by writing
(fe =9 o' (=)

(at+1)i = At — /
’ nm



8

We now want to collapse this down to a low-dimensional DMFT system, In doing so we let the
following be replaced by the low-dimensional recursion:

t—1
_ Law —\D _z
Z = Zfs(zs)B,Is + 7y
s=0
Bt’t,l[a, b] = E[divzil(ﬂ)tfl)a]

Fit ~ N(O7 it)

Sal(t,1), (5,9)) = Bl 1)i(s);]

t
B 2w+ S AL A
s=0
Ay s[a, b] = E[div} f¢(Z)]

o~ N(0, Qp1)
Quial(t+1,1), (s +1,9)] = ELR():f (2]
(ar1)i = ai = TE(fi(z) — v)o' (2,)]

And a further simplification can be made with

Thus,

t—1

_ L _ — . _

5 ST LR ST abo! (20 Busli, €] + (7)s
s=0 " 4eim

1 M
Rt = M izzlaid(gm) )
By sla, b] = E[divj(w;—1)a]
Fit ~ N(Oa Et)
it[(ta i)? (5’])] = ]E[(u_}t—l)i(ujs)j]

t
_ Law _ _ 1T _
W1 = W+ E wsAt7s+7"}5U
s=0

Ay sla,b] = —%E[diviRtaaa’(Za)]
Fqllft ~ N 07 Qt-f—l)

_ ata®
QtJrl[(t +1, 2)7 (5 + 17])] mQJ ]E[RtRSOJ(Zt,i)OJ(ZS»j)]

=7
(at41)i = (at)i — %E[Rtal(zt,i)]'

Now taking the limit n — 0 we arrive at a sequence of integro-differential equation tracking the
continious empirical risk gradient flow,



% L%W— / Ryaio’ (0.0 Edivi (@1 )i] ds + (75);
ee[ ]

(Wi1)i = (wo)i — — Z / ws ) (Eldiv Reafo’ ()] + 7 ds
Ze[m]

| M
==Y aio(z:) —y
M=

(@vs)i = (ao)i — = [ BIRo (200
P~ NOS) S0, (5,5)] = Bl 1))

_ — aza
’F%t ~ N(07 QtJrl)v QtJrl[(t + 17 i)v (5 + 17])] m2 [RtR 9 (Zt Z)O-,(ZSJ)]‘

The values of E[div]R;alo’(z,;)] and E[div}(w;—1);] can be defined self consistently using causality
and simple (yet tedious) derivatives or its can be simulated using Monte Carlo. An additional large
n limit can also be taken to arrive at a large network limit, although this large network limit is
mesoscopic comapred to n and d.

4. WHERE To Go FrRoM HERE?

What do these algorithms have in common?

Consider the following problems:

(1) Let W ~ GOE(n) what is the limiting law of the spectrum of W.
(2) Given observation A = (A;;); jejn) of the following form,

o [Bem(y) i oli) = o())
7 Bern(g;;) otherwise .
The goal is to recover o : [n] — {—1,1}.
(3) Given observation Y = | X + €| for a random design matrix
X € R where X; ; ~ N(0,1/n).

The goal is to recover 5.
(4) Consider Glauber Dynamics on the max cut problem,

H(o)=0'Wo,
where W; j = W;; ~ Rad(1/2). What is the limiting energy achieved by the ground state,
i.e., max, H(o).
(5) Consider the following neural network model

A 1

" 1€[n]
where W € R™ " is initialized at Wy ~ N(0,1/n) and (z,y) € R¥! ~ Py y and the model
is trained with ADAM on quadratic loss.

They all admit an analysis using message passing algorithms (AMP, GFOMs, DMFT,
Tensor Programs).
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