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Abstract. An important statistical ques-

tion in astronomy involves trying to pre-
dict the mass of a Galaxy Cluster as it

provides information on fundamental cos-

mological parameters. Previous attempts
have shown that compressing X-ray obser-

vations into an image and using a Convo-
lutional Neural Network (CNN) is a viable

way to predict the mass of a cluster. In

this work, we display that accurate predic-
tion is possible and demonstrate a phenom-

enon that prediction dramatically increases

in accuracy upon splitting the observed en-
ergy into at least two bins. We discuss

the extent to which these phenomena oc-

cur and show that it is unrelated to a spe-
cific feature of our image, Average Galac-

tic Nucleus (AGN). We present a new ma-

chine learning visualization to certify that
not only the predictions with and without

AGN are similar but the training dynam-
ics when splitting energy bands is the same

as well. Ultimately, we answer the follow-

ing question: How does varying the bins
of the X-ray energy spectrum dictate how

a model can learn to predict the mass of

galactic medium?

1. Introduction

Galaxy clusters are large gravitationally bound celes-
tial bodies on the mass1 ≳ 1014M⊙. Understanding
the mass of these clusters is important as the mass
is correlated with fundamental parameters that dic-
tate how galaxies evolve in space. Making the ability
to observe galactic clusters in space and predict their
mass with relatively high accuracy is a vital problem
in understanding the universe.

Many classical approaches to this problem have been
used previously, two examples are cluster luminos-
ity and global temperature. Cluster luminosity is a

Date: May 2024.
1Here M⊙ is the mass of the Sun

single dimensional statistics that counts the number
of observations that exceed a certain threshold. A
common choice may be to count the number of x-ray
signals that hit a receiver which fall into a specified
energy band (say2 [0, 3]keV ). This statistic is then
fitted into a (possibly non-linear) regression model
that then fits the cluster luminosity to the mass of
a cluster. A further option is to restrict this count-
ing statistics to specific areas of the cluster in order
to reduce variance in estimation, say to ignore ob-
servations near the center of the galaxy due to their
high levels of noise. Global temperature is another
commonly used statistic as it has a direct theoretical
scaling relationship with the mass of the cluster.

Unfortunately, many of these finite dimensional sta-
tistics neglect valuable information that may be help-
ful in predicting the mass of the cluster. There is also
ambiguity in the choice of statistic and it would be
preferable to have a purely data driven embedding
of a galactic cluster which we can then fit a linear
regression model to. Motivated by this data-driven
embedding, many previous works have attempted to
use a (convolutional) neural network to learn a data
driven embedding for cluster mass estimation. The
final layer of this network is then essentially a finite
dimensional statistic that has been trained over many
observations. Machine learning has had recent suc-
cess in solving many astronomical problems [2, 3, 6]
and in particular [4] applied a CNN on X-ray post
stamps of galactic clusters in an attempt to estimate
their mass. The goal of this work is to extend their
findings in three ways:

(1) We will consider a more complex set of im-
ages than those considered in [4].

(2) We will consider many transformations of the
classical single channel image from [4] and at-
tempt to understand how these transforma-
tions will help increase the ability to predict
the cluster’s mass.

(3) We identify that splitting the energy values
into distinct bands and then reporting the
count shows a significant improvement in pre-
diction. We develop new visualizations to
address why this may be happening and for
what types of galaxies does the model im-
prove on.

2keV stands for Kilo Electron Volts
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2. Problem and Data Description

Naively, it is impossible to train a model to predict
the mass of a galactic cluster in a supervised way,
since the true mass of the galaxy is unknown due to
our lack of full understanding of the universe. In or-
der to circumvent this problem, the astronomy com-
munity has developed high quality simulations of how
galaxies evolve in space. In these simulations we can
set the specific cosmological parameters for the sim-
ulation and then can generate galaxies, the masses of
which can be easily recorded. Thus, we can now train
our model on these simulated galaxies with known
masses. In turn, the hope is that these models will
generalize well to real world observations as the sim-
ulations included measurement error on the receiver,
dithering, and a wider variety of clusters than was
used in [4].

Stated formally, we have the following estimation prob-
lem. Given a probability distribution P on

R+︸︷︷︸
Mass

× N︸︷︷︸
Number

of Observations

× R2︸︷︷︸
(X,Y ) location

on reciever

× R+︸︷︷︸
Enegy of
each X-ray
observation

,

we generate a sequence of X-ray observations of a
single galactic cluster. Our goal is too then to try
to find the conditional expectation of the mass given
the remaining observations. These observations were
created using the SIXTE [1] to simulate the types of
data received by the Chandra telescope.

Our dataset consists of 3286 sets of X-ray observa-
tions. Each set varies in size from 736 to 6558594
observations. Figure 1 is a histogram of the number
of observations, binned to remove any cluster with
more than 100000 observations. Previous work on

Figure 1. A histogram represent-
ing the number of observations per
each galaxy. Note that this is only
for sets which have less than 100000
observations.

this problem was done by Zehao Dou which employed

Figure 2. A histogram of the
masses of galactic clusters in the
dataset, notice that a majority
of clusters fall within 13.6-14.3
log10 M⊙ and then we have a tail off
with larger clusters.

a thinning technique to reduce the number of ob-
servations to make this dataset easier to deal with.
Since we are processing this data into an image we
can avoid this issue as, after transformation, our data
is completely converted into a fixed dimension tensor.

It is also important to understand the range of cluster
masses we will attempt to fit a model to, Figure 2 is
a histogram corresponding to the galactic mass (in
log10 M⊙ units):

3. Methodology and Results

3.1. Data Processing. Once we have our observa-
tional data, we will convert each observational set to a
(128× 128× k) image, with k ∈ {1, 2, 3, 4}. We have
four special process which we hope to test against
each other to see which is an optimal transformation
for predicting the mass of the cluster. Before we go
into the specific methods, we detail how we in general
convert our observational data into generic k channel
images.

Consider a single observational vector with n entries
in
(
R+ × R2

)n
. Where the 3 indices are (energy of

an X-ray, its x-position, its y-position).

(1) First, we find the maximal and minimal x and
y values. This is used to find a box which we
will then divide into pixels.

(2) Given some resolution, r, we then divide this
box into r2 pixels. We then create a r × r
array A to fill with our observations.

(3) For each pixel we then search through the
observation vector and collect those observa-
tions with (x,y) coordinates which belong in



STAT 626 (PRACTICAL WORK) REPORT 3

the bounds for said pixel. For each such ob-
servation, we append its energy value to the
corresponding location in the array A.

(4) Once this is done for all pixels, we now create
a single channel as follows:

Given a function, f : Rs → R for any s ∈ N,
we apply this function of each list in the array
A.

(5) We then replicate this operation, with a dif-
ferent function, for our number of desired chan-
nels k.

Using this general formula, we need just specify r and
our collection of functions {fi}i∈[k] for each of our k
channels. Below we detail each of these choices for
our given models and we give corresponding images
for some clusters in our dataset, note that for all of
our analysis we have chosen r = 128.

3.1.1. Single Full Band. This model in the most com-
parable to [4], where their images were composed of
the number of observations in a given pixel within
the [0, 7.5]keV energy band, in base 10 logarithmic
units. In our notation, [4] considered k = 1 and

f1(e1, · · · , es) = 11s>0 log10

(
1 +

s∑
i=1

11ei∈[0,7.5]

)

Where 11E is the indicator for event E occurring. In
order to create a better bench-mark with our multi-
channels models, we will use a similar function with-
out the thresholding3. So for this model we will still
have k = 1 but instead will use the function

f1(e1, · · · , es) = 11s>0 log10 (1 + s)

We call this model the Single Band-Model with the
0+ channel. In Figure 3 we have shown 6 examples
of these single channels images.

3.1.2. Multi-Band Energy Bins. Based on the success
of [4] we will consider a similar construction but will
now consider splitting the energy bands into four bins
and then see if this differentiation of X-ray energy
levels aids in the ability to predict the cluster mass
more accurately.

3We had found that there is little difference in performance

in the thresholded versus non-thresholded images

Mass: 14.253 M⊙ Mass: 14.253 M⊙

Mass: 13.592 M⊙ Mass: 13.601 M⊙

Mass: 13.909 M⊙ Mass: 13.702 M⊙

Figure 3. An assortment of images
under the single band transforma-
tion with no thresholding.

To define these energy bin channels, we have the fol-
lowing four functions:

f1(e1, · · · , es) = 11s>0 log10

(
1 +

s∑
i=1

11ei∈[0,2.5]

)(1)

f2(e1, · · · , es) = 11s>0 log10

(
1 +

s∑
i=1

11ei∈(2.5,5]

)(2)

f3(e1, · · · , es) = 11s>0 log10

(
1 +

s∑
i=1

11ei∈(5,7.5]

)(3)

f4(e1, · · · , es) = 11s>0 log10

(
1 +

s∑
i=1

11ei∈(7.5,∞)

)(4)

We then define the following 4 Multi-channel trans-
formations as follows

(1) Multi-band (0-2.5): k = 1, {f1}

(2) Multi-band (0-2.5, 2.5-5): k = 2, {f1, f2}
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(3) Multi-band (0-2.5, 2.5-5, 5-7.5): k = 3,
{f1, f2, f3}

(4) Multi-band (0-2.5, 2.5-5, 5-7.5, 7.5+): k = 4,
{f1, f2, f3, f4}

We can also see how the differing energy bands will
look in our examples in Figure 4.

Mass: 14.254 M⊙

Mass: 14.130 M⊙

Mass: 13.592 M⊙

Mass: 13.601 M⊙

Mass: 13.909 M⊙

Mass: 13.702 M⊙

Figure 4. Higher order energy
band images of the galaxies seen in
Figure 3, from left to right we have
that bins (0-2.5, 2.5-5, 5-7.5, 7.5+)

3.1.3. Large Observation Excision. A common belief
on the use of CNNs to predict the mass of galaxies
is that the model will predominately use information
from the edges of the galaxy while ignoring the con-
tent contained in the core of the image. For example
a model should, in theory, ignore the AGN (Active
galactic nucleus) spikes in the center of the cluster.
We can recognize the AGN as the bright dots in Fig-
ure 3 & 4. The reason is that these spikes represent

a different source of X-ray observations that are un-
related to the overall mass of the cluster. To test this
theory, we will remove the inner core of the image by
only retaining the bottom p% of observations, this
naturally will only keep the edge of the galactic clus-
ter. Thus, we define p% retained model with k = 1
and

f1(e1, · · · , es) = 11 s>0,
s in the below
the p%percentile

log10

(
1 +

s∑
i=1

11ei∈[0,2.5]

)

f2(e1, · · · , es) = 11 s>0,
s in the below
the p%percentile

log10

(
1 +

s∑
i=1

11ei∈[2.5,5)

)

f3(e1, · · · , es) = 11 s>0,
s in the below
the p%percentile

log10

(
1 +

s∑
i=1

11ei∈[5,7.5)

)

f4(e1, · · · , es) = 11 s>0,
s in the below
the p%percentile

log10

(
1 +

s∑
i=1

11ei>7.5

)

We can see in Figure 5 for this transformation applied
to a cluster with p ∈ {99, 95, 90, 75, 50, 25}.

3.2. Training and Testing Protocols. We con-
sider a CNN with a generic input of a 128×128 images
with k channels using TensorFlow. According to the
model.summary() output, the structure of our CNN
is given in Figure 6

The choice of this format is to attempt to mirror the
success of [4]. Our model is nearly identical to theirs
with the exclusion of their dropout layers. In prac-
tice, we found that these layers are unnecessary for
this task. A key feature of this model is the global
average pooling, which hopefully gives some type of
invariance to small rotations and translations in the
image. For a four channels image (k = 4), Figure 7
gives a visualization of our network architecture. For
each of our convolutional layers we considered a 3×3
kernel, for each max pooling layer we considered a
2× 2 window with a 2× 2 stride.

For both our training and testing data set, we con-
sider all 90◦ rotations and axial flips. The reason
for training is to hopefully make our model robust to
natural symmetries that would be found in clusters in
real life. Since the rotation and axial flip we observe
for our data is essentially random, it is important to
test the model’s performance on all such transforma-
tions, motivating us to apply this change to the test
set as well. As an example, here is a sample image
and two of its corresponding rotations/flips can be
seen in Figure 8. Importantly, we do this transfor-
mation only after we conduct a train/test split of our
data. This is to ensure that the model does not train



STAT 626 (PRACTICAL WORK) REPORT 5

99% Retained

95% Retained

90% Retained

75% Retained

50% Retained

25% Retained

Figure 5. The (0,2.5) and (2.5,5)
energy bands from the top galaxy
in 4 percent retained transformation,
for reference we have keep the color
bar the same as the corresponding
image in Figure 4

Figure 6. The structure of our
CNN according to Tensorflow’s
model.summary() output.

and test on the same galaxy, just with different rota-
tions.

For each of our data transformation (Single Band,
Multi-Band, Core-Removed and AGN-less) we im-
plemented the same training protocol. Training oc-
curred for 100 epochs at a batch size of 16. We used
ADAM optimization at a learning rate of .0005 (half
of the default). Throughout training, we also shuffled
the order of our dataset at each epoch.

3.3. Training Results. For each transformation, we
consider 10 cross-validation folds. For each fold we
had a 90/10 training/testing split that was randomly
generated (with a fixed seed for each transformation)
we then collected the residuals for each data point
when it occurred in the testing set and got the empir-
ical bias and standard deviation for each given trans-
formation. These results are collected in Table 1.
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Figure 7. A graphical visualization of our model architecture when the input is a four
channel image.

Figure 8. An example of rotation
and axial flips that we have applied
to both our training and testing sets,
note that this transformation was
applied after splitting so the model
will not train on one rotation and
test on another rotation of the same
galaxy.

Model Type Channels Bias Std Dev
Single Band 0+ .00086 .11253
Multi-Band 0-2.5 -.00173 .11744
Multi-Band 0-2.5,2.5-5 .00317 .06345
Multi-Band 0-2.5, · · · , 5-7.5 -.00059 .05903
Multi-Band 0-2.5, · · · , 7.5+ .00333 .05818

99% Retained 0-2.5, · · · , 7.5+ .00013 .05903
95% Retained 0-2.5, · · · , 7.5+ .00075 .06131
90% Retained 0-2.5, · · · , 7.5+ -.00161 .06076
75% Retained 0-2.5, · · · , 7.5+ .00365 .06253
50% Retained 0-2.5, · · · , 7.5+ .00190 .06363
25% Retained 0-2.5, · · · , 7.5+ -.00438 .06481

Table 1. The empirical bias and
standard deviation of each of our
proposed models, bold is the best
overall.

We can clearly see that the major difference in pre-
dictive accuracy between models is when we decide
to split the energy bands into more than one group,
nearly halving the loss of our model. This is pecu-
liar considering that our core-removed model does not
show a similar behavior. This means that there is
some fundamentally important information in our im-
age that is revealed after splitting energy bins that go
beyond ignoring the AGN, which may be unrelated to
the overall mass of the cluster. This is further justi-
fied by our results with the AGN-less model, as they
achieve close to the same level of prediction as the
multi-band images yet lack the AGN spike features
in the image. This suggests that a different phenom-
enon is responsible for the improvement when adding
higher energy bands. Perhaps more interesting is that
there is immediately a rate of diminishing returns on
adding more energy bands, as we can see by the mi-
nor improvements when adding in the higher energy
band channels.

It is also worth noting how our results compare to [4].
In [4] they had around 7000 observations, in contrast
to our 3300, and their clusters were much more well
conditioned compared to our more realistic observa-
tions. This is a possible explanation for why they are
able to get a standard deviation of σ = .051 com-
pared to our best case of σ = .06196. It is believed
that with more data and perhaps some model archi-
tecture improvements that we can approach this level
of accuracy.

In addition to our evaluation metrics, we can also plot
the histogram of residuals and a scatter plot of true
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responses versus predictions for each data transfor-
mation, these can be seen in Figure 9.

4. Why Does Energy Binning Work?

Based on our results in the previous section, it seems
like splitting energy bands induces an increase in the
predictive capabilities of our CNN. The goal of this
section is to try to understand why the higher en-
ergy bands aid in the prediction of the cluster masses
through an evaluation of their training dynamics.

4.1. Channel Dynamics Tracking. Naively com-
paring the learned features of our single channels mod-
els to our multi-channels models is apriori difficult,
since there is not a guaranteed relationship between
the two models training dynamics. After initializa-
tion, both the single and multi-band models may
learn fundamentally different features that make it
difficult to understand what is the added benefit to
having split energy bands and on what types of galax-
ies is this extra information relevant. In order to by-
pass this issue, we used a special training protocol.
Over time, this protocol feeds the model subsequent
higher valued energy bands in an attempt to track
how the model’s features change before and after this
new information is given. To be more specific, our
training protocol follows the following four phases:

Phase 1: We first zero out every channel except
the one with the lowest energy band, we train the
model for 50 epochs4. We then add a small amount
of Gaussian noise to the weights of the model to re-
move the model from a local minimum. This step is
vital as if two little noise is added then overfitting will
occur as the model was already near interpolation,
too much noise, and one would essentially restart the
dynamics at initialization. For future work, the noise
level will need to be changed on a problem by prob-
lem basis. The model is then further trained for one
epoch.

Phase 2-4: We now add in the next highest binning
channel by removing its zeros. We train again for
50 epochs, apply a permutation for the weights, and
then train for an additional epoch.

Our goal is to understand what new information and
features has been provided by the higher energy bands.
To accomplish this, we provide a high level visualiza-
tion for what galactic clusters we are able to predict
more accurately with the added energy bands. This
visualization5 can be seen in Figure 10. On the X-axis

4This value was tested empirically to show good results
5As an aside, of all the work that I did for the Interpretable

ML Astronomy group, this was the one thing they liked the
most. Apparently this visualization is the first of its kind and

we have the number of epochs of overall training (no-
tice that each phase has 50 epochs) with while lines
separating each phase. For each column, we have
plotted the prediction by the model on all unobserved
test observations. We have ordered the test observa-
tions in ascending order based on their response (as
seen in the final column of the image). This helps us
to understand what ranges of clusters the model is
able to sort better before and after adding additional
information.

Three observations from Figure 10:

(1) Going from a single channel of data to many
channels helps the colors better align with
the last column, thus giving us higher quality
predictions. There is no noticeable improve-
ment for subsequent channels with respect to
the 2nd channel’s addition.

(2) The single channels model seems to be able
to get the general ordering of the test points,
particularly at the extremes of the mass range.
The second channel’s addition is able to sort
these images at a finer resolution, especially
those in the medium range of mass. Thus,
we would expect that clusters in this section
of the range have nuanced features that split-
ting energy bands are required to understand.

(3) We are also able to identify training exam-
ples which received bad predictions with a
single band but then become much improved
after adding subsequent channels of informa-
tion (for example, in the 50-150 range). This
technique is also able to identify testing points
which our model cannot figure out even with
the full four channels of information (in line
249), this is helpful to know what may be fun-
damentally hard observations to understand;
further analysis can be done on these obser-
vations.

4.2. Dynamical Comparison of Multi-Band ver-
sus AGN-Less Models. In Table 3.3 we saw that
there seems to be very little difference to the predic-
tive capabilities of our models when feed the origi-
nal X-ray image versus an AGN-less one. Moreover,
the energy splitting phenomena between the two data
transformations is quite similar as well. Using our
dynamics visualization, we can attempt to track the
differences in the dynamics for these two models. In

I think I might try to build a library of these things since they
give a nice picture of how the model’s dynamics evolve with

new information.
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Figure 9. Here we have both histograms of our test prediction residuals over each of
our cross-validated folds and a scatter plot of true responses versus predictions with a
reference line for perfect accuracy. These transformations are, going left to right row-by-
row: Single Band, Multi-Band (with subsequent added channels), Core-Removed, AGN-less
(with subsequent added channels).
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Figure 10. Our novel dynamical
visualization: The X-axis is the
overall number of epochs trained,
we have white lines separating each
phase as described in Section 4. On
the Y-axis are our test observations
ordered in ascending true response
(as seen in the last column) cen-
tered by the mean. Looking left to
right, we can see how a test point ob-
servations changes through training.
Looking up to down, we can see at
a given epoch how well our model is
able to sort our data points in test-
ing.

Figure 11 we plot the two dynamics side by side to
see how they differ.

Using Figure 11 we can compare the training dynam-
ics to make even stronger science claims about the
predicting abilities about the split-energy band mod-
els. At first glance, the two dynamics visualizations
appear nearly identical. They both show moderate
disorder in the medium range of mass, which gets
sorted out with additional energy channels. Perhaps
the AGN-less model’s ordering looks slightly more
rough, but the large scale predictions are the same.
After adding additional band there is some variation
between the two models in the 50-100 range but noth-
ing that is significantly different.

4.3. Main Science Claim. Due to the strong sim-
ilarity between the two dynamics and the similarity

in both models predictions, we can confidently state
that the improved accuracy from splitting the energy
bands in independent of the AGN spikes in the im-
age. Furthermore, it seems that the model is able
to provide reasonable predictions with and without
AGN on a similar set of images, giving credence to
the concept that these models “ignore” the core of
the image. This means that any future predictor for
galaxy mass can safely ignore the AGN spikes in the
X-ray images.

5. Conclusion and Future Directions

This report provides two contributions to the Inter-
pretable ML Astronomy Literature

(1) We demonstrated the split energy band phe-
nomena, where splitting the logarithmic counts
of observations by energy band provides an
unexpected boost in predictive accuracy. We
also showed that the phenomena mostly oc-
curs with one additional channel, adding fur-
ther channels has diminishing returns.

(2) We showed that the hypothesis that energy
band splitting helps the model ignore AGN
better is most likely untrue. This was seen
through similar predictive performances of a
AGN-less image in Table 3.3 and by seeing
the similar training dynamics using our dy-
namical visualization in Figure 11.

This leaves the next logical question: What feature is
gained by our neural network when we add additional
energy band channels. By the use of our dynamical
visualization, we conjecture that the structure of ob-
servations for clusters in the medium range of mass is
more complex and separating the energy bands pro-
vides a way for the model to better understand its
mass. Future work could consist of applying saliency
methods such as integrated gradients or LIME [5] to
get a better understanding of what parts of the image
are important to the network before and after split-
ting the energy bands. Another possibility would be
to try to better cluster our images by their penulti-
mate layer embedding to get a better sense of which
galaxies have improved accuracy after subsequent en-
ergy bands have been added. Both of these are on-
going lines of research.

It is also of independent interest to apply the dynam-
ical visualization in Figure 10 & 11 to other prob-
lem and start to build a new collection of machine
learning interpretability tools that focus more on how
a model develops features over the course of train-
ing than what are the final features are at predic-
tion. This may aid in separating the complex features
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Figure 11. (Left) The dynamics of the original Multi-band model as seen in Figure 10.
(Right) The dynamics of the AGN-less model.

that a neural network learns into small incremental
changes during training.
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