CONNECTING AMP AND LOW DEGREE ESTIMATION: A TUTORIAL

MAX LOVIG

We Will Learn: In many statistical problems a common definition for hardness
is when all low-degree polynomial estimators fail. The threshold for which this
phenomena occurs is coupled with the success of AMP, a well known algorithm.
This means that there is a unification of hardness as AMP has been related to
many other algorithms performances (such as first order methods). We present a
introduction® to AMP / Low-degree estimation and then give a walk-though of how
this equivalence is shown under the spiked Wigner model. This result is due to
[Montanari and Wein, 2022].

%Sorry about the length of this project, feel free to skip to section 2 if you are familiar with AMP.
I wanted to also write this as a reference I can hand out if people ask me about how AMP works
and some applications of it.

1. INTRODUCTION TO LOW DEGREE ESTIMATION AND APPROXIMATE MESSAGE PASSING

1.1. Introduction to the Model and Bounded Degree Estimation.

We Will Learn: In many statistical problem there is a question of possibility of
estimation and feasibility of estimation. We look towards the latter question, where
we say a problem is feasible if a bounded degree estimator can achieve a non trivial
MSE. The analysis take place under a simplified “PCA” model, also know as spiked
Wigner. We touch on low degree estimation and why we care about it.

Consider the following model, know as the rank 1 estimation problem, we generate Y in the
following way:
L7

Y = \/596’ +Z (%)
Where 6§ € R™ and Z ~ GOE(n), where we define the a Gaussian orthogonal ensemble
(GOE) as a symmetric matrix Z with Z;; ~ N(0,1) and Z;; ~ N(0,2). This model analyzes
a simplifies “PCA” type model where there is a hidden rank one spike amongst noise.
Many different results has converged on a characterization of the following type given some
restriction to the possible class of 0, S:

If 6 € S then the estimation problem is (Impossible / Hard / Easy)

Date: November 2023.
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Where impossible refers to an information theoretic threshold in which no estimator suc-
ceeds, hard refers to the success of some estimator but the failure within a (usually poly-
nomial time) restricted class, and easy refers to success within a restricted class. Here we
define success in the following manner: Let 6; ~ mp we want to find an estimator 6 which
has 1

BY2(-0 - 8] < V{9
and as such will give a more favorable MSE than the trivial estimator E[6)].
A common choice of restricted class is bounded degree polynomials. There motivation is to
represent algorithms which can be evaluated in polynomial time. In this class we consider
a maximum degree D and every estimator is a maximum degree D polynomial with respect
to the matrix Y, for example some degree 3 polynomials are

3 2
Yio Y53Y56 YioY13Yia+Yi3

We denote this class as L<p. Clearly, when 0 c L<p each of these estimators is computable
in polynomial time. When all estimators in this class fails then, for this papers purposes,
we consider a problem hard. Notice that this is somewhat of a misnomer since the analysis
for this paper is for bounded but large D, which is not enough to consider what is a very
canonical estimator, the top eigenvector. Never the less in many cases top eigenvector is
sub-optimal so it is possible some estimator in L<p can beat the spectral estimator. So
L<p is a relatively reasonable class to being studying the hardness of ().

1.2. Approximate Message Passing. Now we will describe a class of algorithms known
as Approximate Message Passing (AMP). Lets recall our model (x):

1
Y = —00T + 7
n

vn

Consider an estimator z; generated by the following iterative procedure:

2t = %th(wt) —befia(a")

Where f; is a function which acts coordinate-wise on the vector z?, i.e.

ft(xt) = (ft(ﬁ% T ’ft(xfl))

where f; may also contain randomness independent from Y. We also define the “Onsager”

correction term .
1 t
by = I Z fi(z;)

i=1

at a high level this term exists to cancel out non-vanishing dependencies between the iter-
ates.!

Notation
Before we dive into this analysis we define some common notation to help us along the way.

Given a set of vectors u,v € R™ we define there join empirical distribution as v((u,v)).
We also note d3(X,Y) as the Wasserstein 2 distance from X to Y. We also define the

IMake sure to see later for the more generally defined AMP iterates for matrices.
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independent product measure between p and v as p ® v. We also have 3 random variables
which will be used repeatedly in our analysis:

O ~ ()
G ~ N(0,1)
U~ Py (The distribution of the initialization)

1.2.1. State Evolution.

We Will Learn: Many high dimensional problems suffer from overt complexity
when an algorithm operates on objects with high dimension. Approximate Message
Passing is an iterative procedure that admits a simple “single letter” analysis in the
limit as the size of the problem grows. Even more conveniently, once we have this
single letter analysis, for a given error metric, we can tune the parameters (f;) in
this algorithm to optimize it amongst other AMP estimators. To be more precise,
the empirical distribution of each coordinate of z! converges in distribution to a
transformation of a Gaussian with a mean and variance defined inductively by the
state evolution parameters. This exposition is based off of [Feng et al., 2021]

Under model (%), we consider prior distribution 7(¢), and consider a random variable © ~
mg. We also have random variable G distributed according to N(0,1) and a distribution
of the initialization 2° ~ U. Under suitable assumptions on our AMP algorithm (see
[Feng et al., 2021]) we can define the following two parameters of our recursion

1 = E[O fo(1100 + ooU)]
ot = Elfo(10® + ooU)?
pe+1 = E[Ofi (110 + 0¢G)]
o1 = E[fi(u® + 0:G)?]

In a vacuum these may seem like somewhat meaningless results but these equations essen-
tially encode all of the information of our algorithm in the high dimensional limit before
we present the state evolution theorem we make one more generalization of 0. We define
a matrix ¥ inductively with ¥1; = 07, and then we define

_ ) Elfo(10® + 00U) fr—1(pk 10 + 0% 1Gr—1))] fori=1
’ E[fi—1(1t1=19 + 01-1U) fro—1 (=10 + 0k —1Gr—1)] forlie2,---k
Letting (01G1,--+ ,06-1Gr—1) ~ N(0,X[;_1),jx—1)). We are now in a position to give the

state evolution theorem.

In words this theorem tells us that the limiting empirical distribution of the ¢-th iterate of
AMP is N(ut,0?). Codified into notation we have under suitable assumptions?

1 t a.s.
do(v(z® 2", 2", 0), (N (1, By, ) ® 0) =30
2Note that these statements may look slightly more complicated that those in [Feng et al., 2021], I am

converting all of these statements to the single step recursion we designed in section 1.2, not the more
standard 2 step recursion.
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This is also seen in the literature as for any pseudo-Lipshitz function
. 1
lim | (a2l 0) = E9V[W(N (g0, Spy,0), ©)]| = 0

Perhaps a few remarks are in order. First, we can see that can be easily interpreted as
a algorithmic limit theorem for any AMP algorithm, in asymtopia the coordinate of each
iterate have a simple limiting distribution defined by the state evolution. Second, with
0t = f,(2!), consider 1) = (6! — #)2. Then we get for free the limiting statement,

MSE(@,0) = ~|la — 6] = > (0 =0 = BI(© -~ 6+ i)
Analysing this limiting MSE we see that
B[O — fe(1e© + 0:Gy))*] = E[O%] = 2E[0 fi(1t© + 0, G1)] + E[fe(11:© + 0:G1)?]
= E[0] = 211 + 0744
Meaning, due to the simple limit form of the MSE from an AMP algorithm we should choose
function f such that psy; is large and o441 is small. In classical statistical analysis it is

known that the expectation of the posterior minimizes MSE, AMP beautifully replicates
this result, allowing us to have a known best choice of f;.

We define the Bayes AMP as an AMP algorithm with iterates xk, - - - | 2%, with the following
choices for f1,---, fi:

fi(x) = E[O|p0 4 041G ry1 = 7]

Now consider any AMP algorithm z!,--- , 2! with any functions gi,--- ,g;. We have

MSE(2",0) > MSE(z',0)

Even more convenient to our cause is that it is known when, for model (x), the exact
characterization of when z’; converges to the Bayes estimator. The exact formulae are not
of direct importance to this analysis but for applications this threshold can be calculates
relatively easily.

Besides optimally the Bayes AMP also has a rather simple recursion, we can see that

wy = E[OE[O|¢0 + /¢, G]]

= E[OFE[6|D]] (For ease of notation we let D = ¢,0 + ,/q;G)
= EPE[AE[O|D]|D]

= EP[E[6|D]?]

= Ut2+1

Meaning that we can define g;(mg) = us = 02, to unify our two state evolution parameters.
We also define the limit of this algorithm with gaprp (7o) = lim;_y o ¢:(me). Thus, combining
this with our earlier MSE calculation

MSE(z',0) > MSE(x%,0) = E[0%] — qamp (7o)
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1.2.2. Combinatorial Analysis of AMP.

We Will Learn: Common assumptions of AMP is that the non-linearity function
f: is Lipshitz, for later proof techniques one needs to consider f; which are polyno-
mials. It turns out that this extension is not only natural but also invokes many
of the choices used in the equivalence proof. The Analysis shown below is from
[Bayati et al., 2015] and involves unrolling the AMP algorithm, showing that the
Onsager correction corresponds to removing a set of “non-backtracking” configura-
tions, then showing that under the remaining configurations the limiting evaluation
of the AMP algorithm is equivalent if the matrix is replaces with a new independent
GOE matrix at each step of the algorithm. Under this asymptotically equivalent
model the state evolution equation is immediate.

The state evolution results of the previous section are very interesting and useful in a
wide variety of estimation tasks. To add another wrinkle to this already rich story, it also
turns out there are multiple distinct approaches to show the state evolution theorem in
some way. Classically the proof for such a theorem used a conditional distribution lemma
dating back to [Bolthausen, 2012]. There have been information theoretic and statistical
physics methods applied to proving/heuristically deriving such a statement. Below I will
present a slightly different approach to proving the State Evolution theorem. This method
was utilized in [Bayati et al., 2015] and still has common applications for analysing AMP
algorithms related to polynomials.

First we need just analyze this model in lieu of *.

1
Y= —W
VN

Where W is a GOE matrix In this case our algorithm becomes

et = %Wft(xt) = befia (@)

This reduction is accomplished by showing the state evolution results for the above iteration
and then reducing the results from (%) to this model. This is accomplished by defining
u¥ = 2% — pp# and showing the iterates v(u”,6) converge to the distribution (0;G,©) in
the large sample limit. We can then simply add back in the distribution of u;© to this
result. We also can relax the standard Lipshitz condition on f; to any function which has
finite moments. This reduction will be started here as we will show the state evolution
for an arbitrary polynomial f; and then in the equivalence proof we show a method to
approximate the Bayes AMP algorithm. Polynomial approximations for other choices of
ft work similarly. First we approximate f; with a polynomial up to finite degree and then
show that such an approximation induces closeness on the state evolution parameters of the
polynomial AMP algorithm and the original AMP algorithm.

In order to understand the AMP algorithm a first step is to establish some results on a
slight relaxation. For notational simplicity we absorb the ﬁW to be just W. We consider
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a general message passing algorithm according to

ZZQ—>j = x(z)
filj = Z Wi fo( Zf—m)
LE[NT\J
t+1 Z Wi fe Z@%z)
LE[N]

Where we essentially pass messages between nodes nodes i to j excluding a “reversing” or
“backtracking” term corresponding to the message passed from j to ¢ in the previous step.

Notice that the state evolution results would be immediate if we had a related message
passing algorithm y with

Yis; = :c?
filj = Z Wi fi1(yi—i)
LE[NI\J
t+1 Z left yé—n)
Le[N]

Where each W is a GOE matrix independent from other iterates. Immediately we would be
able to make simple statements about the state evolution because we need not be concerned
with strong correlations between iterates due to them being hit by the same matrix W.

We can then relate AMP algorithms to this message passing algorithm y in the following
two results, for m € N, there exists constants C' and K such that

|E(=)"] = El(y})™]| < ON /2 (1)

1
and

|Bl(=))™] = El(zf)™]] < KN~/ (2)

K2

High Level approach to (1):

To show this first result we have a couple of high-level steps we take, these methods are
quite common in AMP analysis so they are worth understanding

(1) Unroll the message passing algorithm
(a) First, as each f; is a polynomial we can consider its decomposition into its
power terms fi(z) = af + ajx + -+ + aPzP.
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(b) Then starting at the final ¢ iterate we want to analyze the average of some test
function . For simplicity we will consider ¢ (z) = z, write out its sum as

*Z Z Wizft 1 Zg_”)

(€[N]

>y Z Wei 1 (22"

ke[D] =1 Le[N

>y Z Weioy (221"

k:e[D] =1 Le[N

k
Z Z Z szat 1 Z Wi ft—2 p—>ﬂ)
ke[D] i=1¢e[N PE[NI\J

= Z af_ll Z Z Z Wi H quift—Q(Z;q_ie)
keD] il eeNIpro- €N a=1

(¢) notice that this unrolling had two steps, first we picked a power term for f and
this dictated the number of new matrices and then we converted the power to
a sum over a labelled product of matrices. A canonical structure to represent
this is that our choice of degree for f is constructing a node with a d+ 1 degree
constraint and then attaching d new edges which were previously unconnected.
Recursively doing this we can see that any such message passing algorithm is a
linear combination of tree graphs, where for each tree we sum over a labellings
on the nodes (constrained to be some non-reversing structure) that induces a
label on the edges W. In notation we have with A representing a finite set of
trees and ¢ as all possible labellings for a tree,

1 & 1
D BLICIED DLV F=NY I Wew.ew
=1 A

6:(IV(T)l]=[n] (v,v)eE(T)

For example in the above unrolling we have a tree like

Thus we can now focus on each of these trees individually. For a specific tree
T, we can pull out the ﬁ normalization from each W edge in the tree and
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pull out a leading factor of n~(E(MI/2+1) seen as:

1 1 1
. Z H Wou),6w) = — Z H ﬁqu(u)@(v)

" SV (D)1= ] () B(T) " s 0V(TY )= 0] (u,0)EB(T)

1
= B2+ > IIT Wow.ew
SV (T)[]=[n] (u,v)€E(T)

(2) We can consider a partition 7 on the node labels which identify blocks of nodes give
the same label. We then define a labelling restricted to 7 as ¢|7, where each label
u, v which share a block in 7 have ¢(u) = ¢(v). This reduces our summation to:

1 1
B/ > II W¢><u>,¢<v)=sz IT Wew.w

¢:[|V(T)|]=[n] (u,v)€E(T) all 7 ¢|7 (u,v)EE(T)

Our goal is to show for which partitions 7 does the summation over ¢|7 cancel out
leading order of n~(IE(MI/2+1)  These non-vanishing partitions correspond to la-
bellings which induces a pairing of the edges W and when taking the quotient graph
over nodes of the same label is a tree. For example here are two partitions 7,7/, and
their corresponding quotient graphs for a tree. One is a pairing and the other is not,

(3) By the non-backtracking criterion we know that two edges which are paired cannot
be adjacent. With all of the non-vanishing labellings having the above characteriza-
tion, we have that any labelling which paired two W’s from different generations (if
we were using the y message passing then this means we paired W* to W where
s # §') will have a cycle after taking the quotient graph and thus this is a vanishing
labelling. Meaning that message passing y is the message passing algorithm z in
the large n limit.

(4) As we have only pairings an non-vanishing then this algorithm essentially only relies
on the second moment of each matrix in the limit and we can replace each generation
of W with a independent copy and still retail the limiting behavior. Thus showing
that in the limit the two algorithms are the same, teasing out the N~/ order comes
from any vanishing labelling shrinks at this rate.

High Level approach to (2):

This second step involves relating the message passing algorithm z to our AMP algorithm
x. At a high level this simply comes from expanding out our AMP iteration to the following
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form

# = S W) = 3 (W2 F @) o ()

JE[N] JE[N]
Z Wi fir( Z W;iWij fi(x )ftfl(mfil)
JE[N] JE[N]

Where the 2nd term in the right hand side is based off the Onsager correction. By unrolling
both terms on the right hand side we see that the Onsager correction will cancel out non-
vanishing labellings which do not respect the non-reversing structure of the message passing
algorithm z. Thus in the high dimensional limit they are equivalent.

Proving the State Evolution

All that is left is to show the state evolution results for the y message passing algorithm.
We will show the two statements inductively on ¢:

lim El(y!,;)"™] = El(Z2)™]

n—oo

72 yz—)j [(Zt) }

Where Z! ~ N(0,02). The base case for both statements is satisfied by assumption on the
limiting properties of the initialization. For ¢ > 1 we define §; to be the sigma algebra
generated by the prior iterates. We have,

7}LH;OE[yfilj|3t = lim Z EWgl fi-1(yi—i)
Le[N]\J

=0

i PGS = S WEfitot
Ce[N]\j
= lim Z Z W&sz ft 1(yl~>z)ft 1(yk~>7,)
Le[N]\j kE[N]\j
=lim > E(WH)feo1(vis)?
Le[N]\j
1
= lim -~ > fiayin)?
Ce[NT\j
= E[fi—1(Z")?] (By the induction hypothesis)

_ 2
= 0t41

As each y“‘l when conditioned on §; is a sum of gaussian random variable, then it is
guassian dlstrlbuted and thus determined by its mean and variance, allowing us to conclude
that

lim E[(y;_,;)"] = BIN(0,07)"]

n—oo
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As for the limiting statement we need to show that
B[y (ih)™ = Bly )™ By 5™ = 0

Once this is true then we have

n

1
Ii VIi= H_l. m
Jim V[ ;(yw) ]

ShmﬁZIE[(yfilj) (W)™ = Bl 5™ Bl 5™
ik
—0

Using Chebychev’s inequality and our expectation results we have
1 n
LS B Bl
i=1
Thus, all we are left to show is:

Bl 5™ w5 )™] = Blly )" Bl ;)™ = 0

By unrolling each of these algorithms we can represent these terms as summations over
partitions on m trees rooted at ¢ and k. We think of the quotient graph G of these collection
of trees together.

We can then begin to consider the possibilities for G. We have the following:

(1) if G can be disconnected into sub-graphs containing &k and i, G, and G;. This means
that terms within the expectation are independent and cancel out.

(2) G is a vanishing labelling and then both terms have 0 impact.

(3) G is a connected tree, notice that we have fixed two indices so there are NI1V(¢)
choices (we need labels ¢ and k). It can be shown that each of these graph have
expected product of size N=UV(@I=1) and thus they are vanishing as well.

|—2

Simple Universality Statements

Since we had to show such a strong statement about which labellings are non-vanishing. We
also get, for free, that this algorithm is universal so long as we replace W with any other
matrix so long as it is symmetric with element-wise mean 0 and variance 1 (i.e. a Wigner
Matrix). In fact this has a “free independence” interpretation but this is unneeded for our
analysis, so we leave this remark here.

Extension to Matrix Iterates

For ease of understanding, we have been restricting to the simple case of a single AMP
iterate. We can extend our results to a d simultaneous AMP iteration of the following form:

1 -
Xt+1 = %YFt(Xt) — Ft_l(Xt 1)BtT
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Where x € R"*? and F}, : R — R? is applied row-wise to our iterates. We define By as,
B; = E[DF;(11:© + G})]

Where DF; = { 0;F} j}; jefq). Now instead of tracking two state evolution parameters we
track a vector and matrix py and X, defined iteratively as:

(ke Xe) = (0,0)
(0,Gt) ~ 1o @ N(0,%4)
pey1 = E[OF (ne + Gy)]
Sii1 = E[F(pe + G Fi(pe + G)7]

We can also have a post processing function g;(x') (applied row-wise).
This AMP algorithm can be proved using the tools from above and will be important to

prove our equivalence theorems.

2. THE BAYES AMP ALGORITHM CAN BE ARBITRARILY APPROXIMATED BY ANY
POLYNOMIAL

We Will Learn: We will consider the Bayes AMP algorithm and justify a polyno-
mial approximation of the non-linearity f; = E[0|,/q;G + ¢:0] as this function has
finite expectation and the space of polynomials is dense under Gaussian measure.
We then show that a suitable polynomial approximation induces a suitable approxi-
mation of the state evolution parameters. Under this state evolution approximation
we can get arbitrarily close to the error of the Bayes AMP after a fixed number of
iterations, sat t. Such an approximation is a ¢t way composition of polynomial which
will have bounded degree if each approximation of f; is of bounded degree.

Our first goal will to be to show the following upper bound on the error of the best D degree
polynomial.

Assume?® that mg is independent of n and E[O] # 0. For any € > 0, there exists an degree
D(e) estimator 6p such that

1 A
lim —E[||0p — 0|]*] < E[0%] — qamp + ¢
n—oo 1

Alternatively said, any Bayes AMP algorithm run for a bounded number of iterations can
approximated arbitrarily closely by a polynomial of bounded degree.

Proof. First we establish that a sufficient condition for this statement is that there exists
an AMP algorithm with bounded degree polynomial non-linearities f; with state evolution

3This assumption on the expectation can be removed if we change the error metric to be invariant under
sign change or if one can extend this proof to allow for spectral initialization (see future directions)
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parameters
e — @l <& of —aq <€
Consider t* such that for the Bayes AMP iterations ¢ it is that largest choice of ¢ such that

qt* > Qamp — 5- We are then provided the following statement by state evolution:

tm B |0 (v) 0] =

n—oo N

(0 — fr. (e, 0+ Ut*G))Q}

92] — 24,41+ 07 4
]
]
]

6%] — qAMP +6/2+360

=2, +1 + 260 + qr,+1 + 2€0
— G +1 + 3¢

Which satisfies our claim when ¢y < €/8. Such an algorithm has degree H§;1 (D; +1) which
is bounded.

Now we are left to show that such a sufficient condition is possible. First we analyze |us — q:|.
We strive for a proof by induction on ¢, of which the base case is satisfied by definition.

To codify this induction argument into notation we define a sequence € ; | 0 indexed by
k. For s <t we define the function f; = f; s (a polynomial) such that we can satisfy the
induction hypothesis at the ¢ step with ¢y = € ;. Or, stated equivalently, we can arbitrarily
approximate iterates up to ¢t with a finite polynomial. Denoting the bayes non-linearity as
f£, we then have that

|,uk,t+1 —qi1| = |E [9 (fk,t (Mk,t9 + Gk,tG) - ftB (q:0 + \/@G))] |
<I|E[f (ftB (k10 + 014 G) — [P (@0 + Vai@))] |
+|E [9 (fk,t (g0 + 0,1 G) — ftB (pg0 + Uk,tG))] |
= By (k) + B2 (k)

To analyze these terms further we need the following convenient facts?.

(1) fB(z) = El0|¢:0 + \/&:G = =] is continuous
(2) [fF (@) < CO + =)
(3) there exists a polynomial f; such that

—u? £
sup |fu(w) = SP(W)|eTF <

Utilizing these three facts we can continue our analysis.

4As these don’t have to do with AMP or really any high-dimensional methods, I chose to omit the proof
of these results and we just take then for granted here.
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By the induction hypothesis p4 60 + 01 +G T b+ V4G as we let k — oo. Thus we have
Jim B (k) = lim | [0 (f7 (a0 + 0046) = 7 (00 + Vi G))] |
= | Jim B [0 (£ (a8 + 000G) — 1P (a6 +V@G))] | (Contimuity of | -

= 12| im0 (P (sl + 01,6) — 1P (b + /) ||
(fB(z) < Cy(1 + |z|) which has finite expectation, allowing us to interchange limit and expectation)

= 0]
(As fB is continuous, the inputs to f¥ converge almost surely implies the difference goes to 0)

Meaning we can choose a k' such that Yk > k', By (k) < . Now to analyze Bs(k), without
loss of generality assume that we have chosen k large enough such that max(py ¢, o ,%t) < 2¢y.
As we assumed that 7(6) is sub-Gaussian with parameter 7. We first make the observation
that Zi+ = pr +0 + 01,+G is sub-Gaussian with parameter

P+ oy S UGT @) =T
Using Cauchy Schwartz we can bound By (k) with
011/2
Ba(k) < E[6%)/2E [ (Fs (a8 + 000G) = 7 (1100 + 0146G))]

Now using out third convenient fact we can choose f; such that

€0

2
B —u_

sup|fi(u) — fi7 (u)e s < 1B 2

or equivalently, with 7 = 7,
u?
B ear? g
sup|fi(u) — fi” (u)| < 1B
by expanding the expectation this means
9 2 1/2
9 1/2 6427192’,: c € Z%,t 1/2
_ ¢B "t Eo — 0 2y
[/(flc,t (Zra) = 17 (Zis)) GFZM] < / AE[07]1/? Fz,, = 4E[9]1/2E e
Thus,
[ 2}1/2 Zi vz
e B0 Py
Bo(k) < L2V 1 gl eix
2(k) < < pape T |
a2, 1/4

< %OE ein (By Jensen’s Inequality)

< %021/4 (By Sub-Guassianity)

<%

2
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We can continue the analysis on o2 with

07 111 = @1l = 1B [ (ot (a8 + 014G))° = (£ (a6 + V@) ] |
B [(fF (1040 + 010G))” = (Fua (16 + 010:))?] |

1B [(17 (a8 + 014G))” = (FF (@0 + vai@)) ] |
= Ay (k) + Az (k)

Thus we are left to bound A; and As. The analysis of A; is equivalent to B;. We can still
exchange limit and expectation as we have fZ(z)? < (1+ |z|)?, giving us finite expectation.
We also have py .0 + 011G b+ /@G implying that the difference (by the continuity
of fB and -2),

2 a.s.
(£2 (e,t0 + 01,4 G)) ™ — (froe (pte,e0 + okt G))” 450

Thus bounding A;. For bounding Ay we need a new version of (3) with the square (f7)2,
it shouldn’t be surprising such a method exists. Thus we can bound As the same as Bs.
Thus we conclude the proof. A

3. NO POLYNOMIAL ATTAINS A MINIMUM MSE LOWER THAN THE BAYES AMP
ALGORITHM

Now we are left to show the corresponding upper bound,

Under the same assumptions on © as our previous theorem, for any constant D we have

. . 1 5
lim inf —E[|0 —0|]*|E[0%] — qamp

n—>ooé€LSD n

The interpretation here is pretty straightforward, any low degree estimator for some large
but bounded degree D will never outperform AMP. Even more so, we will show that any of
these low degree estimators can be reduce to a message passing algorithm which is known
sub-optimal to the Bayes AMP. Combining this result with the one in the previous section
we have established that the threshold for success in the low degree regime is equivalent to
the success of Bayes AMP.

Proof. See the Remainder of this project A

3.1. The Best polynomials in (x) are tree structured.
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We Will Learn: The goal of this section is to show that there exists a polynomial
that is “tree structured” that achieves the optimal MSE amongst all polynomial
estimators. Clearly if such a statement were to be true than AMP seems like a
very canonical method to mimic polynomial estimators. This result is proved by
constructing the polynomial as a solution to a linear equation of orthonormal coef-
ficients. Hopefully you will notice many similarities with the low-degree estimation
lecture

\. J

Lets consider a basis for tree polynomials that we hope can be a good estimator. Let 7<p
be the set of rooted trees with at most D edges (up to some root preserving isomorphism).
When we refer to the root o, we mean a specially designated node that is in any tree
T € T<p. We also define a labelling rooted at 1 on a T € T<p as a function ¢ : V(T') — [n]
as a labelling of each node in the tree T' constrained to ¢(o) = 1.

We say a labelling ¢ is non-reversing (also notated as y € nr(T)) if for each distinct vertices
u,v € T with the same have either

(u,v) >2
(u,v) =2 and u, v are children of a common parent

(1)
(2)

QU X

For example we have:

We can then define for each 7" € T<p a corresponding polynomial which is the evaluation
of the tree graph sum over the set of non—reversing labels, meaning

Fr(Y) = W Yoo I Yewew
penr(T) (u,v)eE(T)
This allows us to construct the space R[Y ]< p as the set of all polynomials p such that
p(Y) = Z prFr(Y)
T€T<p

for any pr € R. Hopefully it is clear why this basis of polynomials is favorable to an AMP
analysis.

Of course there are some preliminary comments to make. First we can reduce our analysis
to just finding a good estimator for, say #;. By symmetry of the MSE, any estimator that
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achieves the minimum MSE for estimating #; will be able to achieved the minimum MSE
is estimating the vector 8. We can begin our proof with the goal of showing that the best
estimator for A, in terms of minimizing MSE, is tree structured.

If we could show the following result then we would be very close to showing our low degree
- AMP equivalence. Stated formally, for any my, 1, D we want to find p € R[Y]gD such that

lim inf E[(q(Y) = ¢(61))%] = lim E[(p(Y) —9(61))’]

n— oo gELSD n— o0

The reason for rooted labels at 1 is that we want to estimate ¢ (6;) and we evaluate tree
polynomials in reference to the final output being generated by the root.

We can use a more simplified model than (%), this new model will replace Z with Z where
Zij ~ Zij and Z;; ~ N(0,1). This is justified on the left side as any tree structured
polynomial doesn’t use the diagonal since we are reducing the amount of noise in the model
we expect the best low degree polynomial to be better with noise Z than the best low degree
polynomial with noise Z.

We can immediately conclude that

lim inf E[(q(Y) = (61))%] < lim E[(p(Y) —(61))’]

n—oo g€L<p n—oo

Proof. As we have that any polynomials p € R[Y]L,, is a degree D polynomial. Unfortu-
nately the other direction is much harder to grasp, in fact the proof technique shown here
is relatively unique in the sense that it constructs a much easier to use basis then R[Y]Z
and then shows a change of basis argument that allows a polynomial in this simpler basis
to be written as a polynomial in R[Y]Z . A

Constructing this simpler Basis

We Will Learn: We will define a slightly more general setting for our basis, that
of distinct labellings over multi-graphs (known as embeddings). This basis is con-
veniently® invariant under permutations of the rows and columns of Y (excluding
1). Utilizing an extension of the Hunt-Stein theorem we have that the minimizing
MSE polynomial must be spanned by this basis. For simplicity I will assume some
background on the Hermite polynomials

%Perhaps purposefully is a better word here

Unfortunately the class of non-reversing polynomials is somewhat awkward for this analysis
so we will need to construct a surrogate basis and then have a clean-up step to convert
functions in this surrogate basis to the original non-reversing basis. This new basis will be
based on the class of multi-graphs with < D edges, denoted G<p (in order to maintain the
< D degree polynomial constraint) and is summed over the class of embeddings. We say
that ¢ : V(T) — N is an embedding for T if each distinct node gets a distinct label and we
have ¢(o) = 1.
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It is immediate that this is a super-set of our non-reversing basis over tree graphs as every
non-reversing labelling ¢. We can see this as any labelling ¢ can induce a multi-graph G
by taking the quotient graph over all nodes of the same label. In fact for any ¢ we have its
image o = im(¢, G) which consist of a vector in N (3) where the a;; (with 4 < j counts the
multiplicity of edges in quotient graph of G induced by matching nodes based on ¢ between

nodes ¢ and j.

For a given «, we can consider « as an edge code-book where the i, j-th element refers to
the number of edges from i to j. In this case we can consider the set of each connected
component of a, denoted C(«). Notice that each sub-graph I' € C'(«) can be viewed as
a vector or graph, which ever is convenient. For each a we will define the centered graph
Hermite polynomial

Ho= [ (hr(Y) = ERhe(YV)))

reC(w)

Where we have

hF(Y) = H haw (Y’Y1 ,’Yz)

(71.72)€E(T)

where hy, is the k-th Hermite polynomial and the expectation is over Y in (x). We can now
sum over all of our embeddings to have

1
Ho(V) = —— Him(o.c)(Y)
lemb(G)] , 5o

This polynomial has the symmetrization property where it is the linear subspace that is
invariant under swapping of non-one rows/columns of Y. This can be seen as for a given
embedding ¢ the swapping of a rows or columns i,j # 1 in Y is equivalent an embedding
where each coordinate in reference to the label 4 and j are swapped. As we sum over all
embedding, we maintain this symmetry property.

The Hunt-Stein theorem tells us that the best estimator for this task of estimating a function
of 01 is invariant under the permutation of the non-one rows and columns of Y. Of course
this is in terms of all estimators, not just low degree but this paper provides the extension
to low-degree estimators (a result which is of independent interest). Meaning that if we
define the space:

RYJZE ={f(Y)= ) acHa(Y)}

GeG<p
Then we have that
qeig; E[(q(Y) — ¢(61))?] = qeRi[r;f]";yg E[(q(Y) — ¢(61))]

Showing that the optimal polynomial in this new basis is tree structure

We Will Learn: Under this new basis we can construct explicitly the minimizing
MSE polynomial. We then have a magical property which drive the ability to prove
this statement: Any coefficient for a basis element that is not a tree is vanishing and
thus the best polynomial is tree structured in this new basis.
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Now that we have this simplified space, we can define two vectors ¢, € Rl9<rl and M, €
RI9<plx19<p| where
cna = EHA(Y)P(01)] My ap =EHa(Y)Hp(Y)]
Note that these are essentially the projections of ¢ onto the graph polynomial H 4 and then

a matrix tracking the dependencies between two elements of our basis.

We will state the following fact without proof’, for some C > 0:

1My lop > C
Thus we are now able to solve the following equation®
inf Bl(q(Y)—¢(601))°] = _inf —E[(01)] + Ela(Y)?] - 2E[q(Y )y (601)]
QER[Y];D QER[Y];D

The solution of which is equivalent to

arg mqin E[(Z QAHA)(Z GsHB)| — QE[Z qaH (Y)Y (61)]

A B A
= argmin D _ dadnBHaHp] =23 GaBHA(Y )9 (01)]
A,B A

=argmin Y GadsMap — 2 daca
9 AB A

= argmin GgTMg—2¢"c
]

Taking the derivative wrt to ¢ give us the minimzer as M is positive definite. With
0
9q

And thus our minimizing value is

L, Bl(a(Y) = 0(00)%] = B(e.)"] - &M e,

=2MG—2c=0 = §=M""‘e

Even though we know the optimal solution, the actual polynomial that satisfies this is not
too clear. Magically, the limiting forms of M and ¢ have a block structure that lets us
conclude that the minimizing ¢ is always tree structured in this basis.

There exists limits M., and co, with

Mn,AB = MOO,AB + O(n_l/Q) Cn,A = Cx0,A + O(n_l/Q)

Where we have, with reorganizing the matrix M., and ¢, such that A, B that are trees are
in the first row/columns and rows respectively, the following block structure

Py O  [dse
el 2] wls

Interestingly, the choice to normalize each hermite polynomial by its expectation is chosen

so this result holds.

5The proof for this is not to difficult but is rather tedious and not vital to the understanding of this
result
6Spcciﬁcally for this derivation we neglect the n subscript
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High-Level Approach to ¢, (and M)

Proof. The analysis required to find the asymptotics for co, is relatively straightforward.
Our goal is to calculate

ca = E[HaAY)0(01)] > EHime.a) (Y)$(01)] = V/lemb(A)| E[Ho (Y)(61)]

B 1

V0emb(A) S )
The last step is justified as the expectation of H depends only on the shape of A, not the
exact embedding ¢ (Recall that changing the embedding is only changing which variables are
assigned to which edges, each of the variables are equally distributed so there expectation is
determined only by the structure of A). Thus the last equality above is for some embedding
« on A. We have the number of embeddings as

n—1

e = (1
As we choose, for each non-rooted node, from 2 : n as our pool of labels and then assign
these labels to each node in the graph. As D is bounded (and there for V(A)) we have the
asymptotic growth (}) = %T(l +o(1)).

V) = 1! =V o)

Now we can analyze E[H,(Y)1(601)], clearly this will be 0 if A has a connected component,
say C, not containing the root, as we would have

EMa(Y)¥(01)] = E[]] (hy = E[h )% (00)]E[] ] (hy — Elhy])1b(61)]

veC v€C
= E[H (h'v - E[hv])]EW)(el)]E[H (h'v - E[h'y])1/’(91)]
veC v€C
= 0- Elp(@)] B[] (hy — Elh,))(61)]
v¢C

=0

With some facts from the Hermite polynomials we can show that
EHa(Y)i(61)] = Can™ 217

and thus
ca = nIVAISIIE@D (1 4 o(1))
As only trees have |V (A)| = 1+ |E(A)| then our result follows.

The analysis of M, is more complicated as we now have to analyze
1

Man —
AP /oA € emb(A), o5 € emb(B)

EHim(pa,4) Him(s5,B)]

Here it is natural to analyze the intersection structure of the two embeddings (i.e. when the
labels for nodes in embedding A and embedding B are equal), using some graph theoretic
knowledge (alongside some facts about Hermite polynomials) we can eventually work down
to

Mg = ne(4B)
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With
0(A,B) = <3 if Ae TSD and B € G<p \ T<p or vice versa
<0 Otherwise
I leave the remainder of this analysis to the paper. 5

Now we can defined r(Y") as the restriction of the optimal ¢(Y") found earlier to only tree
graphs with

r(Y)= Y V) Hr(Y) F=Pllds

TGTSD

As a direct result of all the ingredients we have here, we have, we can redo our analysis for
the optimal ¢ in the limiting case to get

dE. P ldy =t M ey (By Matrix Multiplication)
and thus,
lim E(r(y) — $(61))%] = E[1(61)%] — ¢ Moo oo

Which is knocking on the door of our original goal.

Change of basis and putting everything together

We Will Learn: Now that we were able to show that the minimizing MSE poly-
nomial is tree structured in our simpler basis we construct a change of basis up to
vanishing error. We can then wrap everything up to show that the best polynomial
is tree structured in a basis favorable to our AMP analysis

We have been fortunate enough to be able to show that there exists a tree structured
polynomial in some basis of graph polynomials. Unfortunately, to be able to use message
passing we have to have our polynomial be in terms of the Fp basis. Luckily such a result
holds

For any fixed A € T<p, there exists n-independent coefficients m 4p such that

Z mAB]:B(Y) + SA(Y)

BGTSD

where E[€4(Y)?] = o(1).

For notaional convience we let Y¢ = H(Z JeE(B )Y¢(i)¢(j) = Yim(®.B) At a high-level this
is done by writing

Ha(Y) =

Y¢ — \/lemb(A)|E[Y?]
\/|emb ¢€e§(/‘

This simplification occurs as when A is a tree each edge occurs only once and thus we have
only single degree herminite polynomials. We have ¢* is an arbitrary embedding, this is
permissible as the expectation of Y is independent of the actual embedding as every upper



CONNECTING AMP AND LOW DEGREE ESTIMATION: A TUTORIAL 21

triangular Y is equally distributed. \/|emb(A)|E[Y®"] is just a constant so we can project
it onto Fg = 1, we are left to show the leading term can be projected. We have

1 1 !
o I g
lemb(A)] Seomb(A) lemb(A)| denr(A) lemb(A)] penr(A)\emb(A)
|nr(A)] 1
T FaAlY) - ———— ve
lemb(A)] |emb(A)] ¢>enr(g\:emb(A)
nr(4)] 1 ,
lemb(A)] |emb(A)] e Avembia)

The middle term disappear as embeddings make up 1 — o(1) proportion of non-reversing
labellings (there are n? embeddings all other remaining labellings have a strictly smaller

count in terms of the exponent of n). It is left to show that the last term can be suitably
controlled, see the paper for how to do this.

We can now write

r(Y)= > FaHaY)

A€T<p

= Y ia > mapFp(Y)+o(1) (As |T=| = O(1)

AGTSD BETSD

= > (Y. famap)Fa(Y)

BeT<p B€T<p
= Y pFe(Y)

BeT<p
=p(Y)

Il

3>
S
—

And with some careful book keeping we can extend all our our 7(Y") results to p(Y). This
isn’t too difficult as everything we are dealing with is bounded independent of n.

3.2. The evaluation of a tree structured polynomial can be related to a Message
passing algorithm.

We Will Learn: Using what we leaned from [Bayati et al., 2015], we will construct
a message passing algorithm that can be well approximated by AMP in the limit.
This message passing algorithm recursively evaluates any low degree polynomial in
at most time O(Dn?) (already a cool result). With a slight modification from our
results in section 2 we can show that this algorithm has an AMP state evolution and
therefore is always beaten by the Bayes-AMP.
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Similar to [Bayati et al., 2015] we define a message passing algorithm s by *

S?—)j =0
1
sfilj = NG Z Yir Fy(sh ;) (As messages s;_,; = 0 by convention here)
[(n\{i,5}
1
sl = NG > YiFi(si)
ke[n]\i

= (st

Note that we are actually defining a family of recursions here as we can construct an enumer-
ation of T<p, (T1,---,Tj7.,|) and define a matrix type message passing algorithm where
each column is each element of this enumeration. For convenience we will also define a graph
for each tree T known as Ty by the following algorithm:

(1) connect an edge to o in T to a new node v
(2) make the root of this new graph T to be o = vy

We also define the class of children of root for 7', D(T'), as the set of sub-graphs which are
connected to the root by a single edge. For example:

We define a special operation f* as
Fi(s)(T)= [ s
TeD(T)

This operation defined the value of a given tree T as the product of its sub trees.

Notice that the normalization of this message passing algorithm does not perfectly match
our non-reversing polynomial basis, for example when we unroll this algorithm we see that

1
Frisj = IE(T)]/2 Z H Yo (u).o)
penr(T,i—j) (u,v)EE(T)
where nr(T,i — j) is a non-reversing label rooted at ¢ and all direct children of the root

do not have label j. Luckily we get luck as these normalizations are equivalent in the limit.

"Now is a good time to compare this recursions to section 2
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For nr(T) we have (n — 1) choices for each direct child of the of o and (n — 2) for every
other node. For nr(T,i — j) we have (n — 2) choices for each node.

In a tree each node (except the root, which is fixed) corresponds to one edge, thus

nr(T)]

nlE(T)]

[nr(T,i — j)|
I BD)]

Wrapping this all together we have the following result:

=1+0(1) =

Let us have the message passing algorithm s with F; = F* defined above then we have for
a specific tree T with ¢ = depth(T)(the tree depth),

Sﬁﬁj(T) ]:T+ i—i Y)
Sﬁ(T) (1+o(1)Fr

L (Y)
$0(T) = (14 o(1

)
(
)
NFr(Y)

)
)

This can be seen by unrolling this message passing algorithm at s!_, j (T') as we did previously
in section 1 (albeit complicated). This unrolling will naturally sum over all the nodes in
a graph with the non-reversing structure. A good intuition for what is going on is that,
when we calculate the iterate ¢, we want to have the evaluation of all trees T" with depth
t. Starting from the root, we have the multiplication with Y representing each of the edges
with a unified label. Then the non-linearity finds the value of each sub trees (removing the
root and edges attached to the root as they have already been unrolled) according to F*,
we have these values in the t — 1 iterate. Inductively repeating the unrolling builds any tree
of depth t in ¢ iterates. To solidify this we know that the first iteration make all the single

depth trees, closing the induction loop.

Summing over all trees T with linear coefficients pr gives us the evaluation of the polynomial.
We have O(n?) operations by enumeration. The AMP algorithm runs in the tree depth of
T, which is at most D, thus this algorithm runs in O(Dn?) time. Riding on our results from
section 2 (extended to the matrix case), e can immediately see that this algorithm has a
state evolution, specifically with (©,G;) ~ 7o ® N(0,%;)

i Blg(si,00] = lim B[(s},60)] = B[O + G, )]
lim E[(51,0)] = Ep(Fi(1:0 + Gy), ©)]
n—oo
Now that we are fueled with the power of AMP, the exact coefficients of our vector ¢, and
matrix M, easily with®:

MSE<p =lmE[(6; — Y prFr(Y
TeT<p

lim B[, Fr(Y)] = E[OF* (110 + G¢)(T)] = p1441(T) = coo,r
lim E(Fr (Y)Fr(Y)] = E[F* (10 + G)(T)F* (1O + Go)(T)] = 0141(T, T') = Moo 117

8All lim are with respect to n — oo
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Thus the optimal MSE given by a low degree estimator is

MSE<p =lmE[(6; — Y prFr(Y))*] = E[0%] = 2p" 1 + 9" Sepap
TeT<p

Which is equivalent to an AMP algorithm (under the extension to matrices) with d = |T<p|,
F, = F* and g, = pT F*(x!). Of which the Bayes-AMP estimator is known to be better
than, the conclusion follows.

4. FUTURE DIRECTIONS / APPLICATIONS / RELEVANT LITERATURE

The main three papers that developed the tools needed for this analysis are [Bayati et al., 2015,
Montanari and Wein, 2022, Feng et al., 2021]. Here we mention some possible extension and
good resources to learn more. I have assigned stars to the difficulty of these possible exten-
sions. Under some very simple priors mg(A) (A being a hyper parameter of the prior) once
Immediate can derive the exact value of g4 M P and for which hyper parameters A\ allow a non-trivial
Applications(*) Bayes-AMP MSE. Under this new result this analysis automatically derives the threshold
for low-degree polynomials. An example of such an analysis is given in [Feng et al., 2021].
For an example which is low degree see [Montanari and Wein, 2022].

Universality (**) In many cases AMP algorithms have been extended to be “universal” where we can replace
the matrix Z in () by some other Wigner matrix W. A common choice is some type of nor-
malized Radmacher matrix for random graph models. For example [Deshpande et al., 2015]
provides analysis of the stochastic block model (SBM) where AMP is utilized to find the
asymptotic per-vertex mutual information between a vertex label and the entire SBM graph.
This information is related to a phase transition of the information theoretic impossibility
of recovery in SBM. This analysis required a nasty interpolation to model (x). It was shown
in [Wang et al., 2023] that such an interpolation is unnecessary and the SBM model has the
same state evolution and the analogous spiked Wigner model. To my knowledge there is no
exact result that optimal algorithm is still Bayes AMP with a generic Wigner matrix but
certainly (excluding issues of taking limits) seems very intuitive. Once this is establish then
the upper bound proof can be immediately established, the lower bound proof relies heavily
on the properties of the hermite polynomials which are chosen due to the Guassian measure
of Z. A next step would be to try to redo this analysis with a similar set of orthonormal
polynomials with Z;; ~ Rad(1/2).

Extensions to Montanari explicitly mentions this in the paper than once could remove the E[O] # 0

D =log(n), (*) requirement if you could show the equivalence bounds for slowly growing degree, say D =
log(n) (Montanari conjectures that may be true for D = n-%?). This would also be convenient
since many times AMP needs a spectral iteration to have nice convergence properties, which
requires running a “burn-in” of log(n) number of iterates. Technically this is somewhat of a
burden to show since one needs to confirm that all of the approximations made throughout
the paper have o(log(n)) (which shouldn’t be too tricky) and some conceptual issues with
objects in the proof slowly growing. Overall the stretch to log(n) shouldn’t be too much of
a burden, just tedious. The extension to n"% will not be so trivial as there are some error
rates here only of o(n~'/?).

Extension to
rectangular
algorithms (*)



Extensions to
regression models

**)

Extension to
non-separable
AMP (*%%)

Equivalence of
other “hardness”
classes (***)
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I am surprised that [Montanari and Wein, 2022] didn’t include this in the very end of the
paper. There are usually very straightforward way to embed a rectangular AMP algorithm
inside of standard AMP algorithm. The benefit of this approach is that we could generalize
our model (%) to
1 N

Y = %U’Ut + Z
where Y € R™*" with ™% — 4, Z,-j i N(0,1), u; i 7wy and v; i my . Perhaps there is much
more difficulty as you have to have some awkward Hermite basis that has normalizations
based on m, n, § which is not straightforward. An example of embedding a rectangular AMP
algorithm into a symmetric AMP algorithm can be seen in [Berthier et al., 2017].

(%) is one of two “fundamental” models for which we have an AMP algorithm. The second
of which are high-dimensional GLM models which take the form of

With ¢ € [m] and X;,5 € N and w; € R is some noise. We assume that X; ~ N(0,1/n).
The hope would be that we could perform some similar analysis to show that the best
polynomial estimator in this model is tree-structured. A good first step would be to consider
the trivial ¢ = I function. See [Feng et al., 2021] for an introduction to these models and
[Tan and Venkataramanan, 2023] for how complicated they can get.

Many cases it is not reasonable to think that the prior mg is naturally an 4id distribu-
tion. There may be very important correlations between our prior that can be codified as
some outside information. Working this information into the algorithm is not immediately
straightforward as the Bayes AMP functions become non-separable over a growing number
of parameters. In this project we have discussed AMP under the notion of non-separable
non-linear function, [Berthier et al., 2017] gave an analysis of separable AMP algorithms
which are not just suited to this cause but many other interesting methods for model (x).
Unfortunately there is a lot of uncertainty in this direction as separable functions are rather
delicate in the AMP analysis, the benefit may be worth it as they can cover a much larger
class of algorithms. Personally I believe that these algorithms may be useful one day for
analyzing local search algorithms (see point below)

It has been shown previously in [Celentano et al., 2020] that AMP is also known to charac-
terize the ability for a class of algorithms with access to gradient information. It would be
interesting to see how other definitions of hardness could be reduced to an AMP algorithm.
Many algorithms can be reduce to message passing. The fact that message passing can be so
versatile and that many message passing algorithms can be modified to an AMP algorithm
is a very fruitful technique to keep in mind. I think it would be interesting if there were
some way to convert local search algorithms, say MCMC, into a message passing algorithm.
Although I am not sure to what extent other tools mentioned above need to catch up to
make this possible.
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