Can You Win The Seattle Mariners?

Major league baseball, in a brilliant marketing move, has decided to host a sweepstakes to win the Seattle Mariners. All that you have to do is collect the most newly minted contest baseball cards, each representing a famous player. You and n-1 other people enter the contest, and the MLB sends each of you a box containing between zero to M distinct cards. Each distinct card is in your box i.i.d. with probability q.

There is a catch, the MLB wants to give the Mariners to a group of people to manage, so each contestant is allowed to pool their cards together with k-1 people of their choosing. You desperately want to win, but don't know how many distinct cards you and k-1 other people need to win.

If the MLB decides to have $M=C\log_2\binom{n}{k}$ cards, with $C\in(1,2), k$ chosen so that $\log(k)/\log(n)=\alpha$ for $\alpha\in(0,1)$ and q chosen to solve the equation $(1-q)^k=\rho$, with $\rho\in(0,1)$. Does there exist a triple of (α,C,ρ) where you can answer the following question:

What is the maximum proportion of the M distinct cards that a group of k people can get in this large n limit?