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CHAPTER 0

Introduction and Future Research Directions

Introduction
A major focus of statistical and computational research has been related to the study of
algorithms and problem landscapes in high-dimensional inference. The term high-dimensional
refers to a limit where both the number of observations and the dimensionality of the problem
grow, but some intrinsic relationship between them is maintained. As real-world datasets enter
this regime, understanding the trade-off between algorithmic performance and computational
efficiency becomes increasingly important. Moreover, how far can we broaden the set of tools
that can be used in high-dimensional inference?
This prospectus investigates three vignettes of high-dimensional inference problems to gradually
explore answers to these issues:

(1) Bernoulli group testing and MCMC methods,
(2) Universality results in Approximate Message Passing (AMP) under general assumptions,
(3) The computational-local gap in sparse tensor PCA.

Utilizing techniques from statistical physics, random matrix theory, and probability, we inves-
tigate the extent to which the trajectory of a high-dimensional algorithm can be tracked and,
therefore, characterized in terms of its performance. Along the way, we encounter statistical-
to-computational gaps (where statistically optimal solutions exist but remain computationally
intractable), local-to-computational gaps (where locally optimal solutions exist but underperform
compared to their global counterparts), and extensions of algorithmic trajectories across a
universality class.
Chapter 1 explores the landscape hardness of Bernoulli group testing (BGT). This study is
conducted from the perspective of Markov chain dynamics and the Overlap Gap Property
(OGP). We show that previous analysis, based on a vanilla “annealed” prediction, misled our
understanding of this landscape, and a conditional annealed prediction is rigorously proven
to give a more accurate characterization. This not only provides evidence that BGT exhibits
a statistical-to-computational gap but also, to our knowledge, marks the first instance where
conditioning on a high-probability event “corrects” the annealed prediction.
Chapter 2 explores the universality of an algorithm known as approximate message passing
under the assumption of non-separable activation functions. This work broadens the applications
of AMP from problems with Gaussian designs to the more general Wigner designs. We also
introduce abstract assumptions dependent on the underlying computational graphs representing
an AMP algorithm. When these assumptions hold, the trajectory of the AMP algorithm is
shown to be identical in the limit with respect to the class of Wigner matrices. These results
unify and extend prior work on universality and state evolution in AMP. I hope the results of
this chapter will soon be available on arXiv.
Chapter 3 explores the computational-local gap in sparse tensor PCA, an in-progress project.
These results consider a general framework for analyzing algorithms on Gaussian additive models
known as noise-injected querying. We use this framework to analyze a set of local algorithms
that can be written as Markov chains and prove that previously believed local-to-computational
gaps for sparse tensor PCA do not exist. The results given in this chapter are preliminary and
are subject to change.
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0. INTRODUCTION AND FUTURE RESEARCH DIRECTIONS 4

Taken together, each of these vignettes provides insights into the limits of specific algorithmic
classes, offering new perspectives on the study of high-dimensional inference and algorithmic
performance. A more comprehensive introduction to each of these problems, along with an
overview of the existing literature, is provided in each chapter.
Future Research Directions
Within the next three months, I hope to have finished both manuscripts [27, 50] corresponding
to Chapter 2 and Chapter 3.
For future research, I plan to explore models similar to those in this prospectus and examine
whether the same techniques apply. I am particularly interested in understanding a class of
optimization techniques on generic machine learning architectures. Additionally, I am drawn to
the connections between different frameworks for computational hardness, such as the relation
between AMP and low-degree polynomials discussed in Chapter 3’s introduction. Specifically,
I aim to state these results with minimal assumptions on the model’s structure. Perhaps a
general class of algorithms exists that unifies multiple computational frameworks? Could this
class inspire new testing and recovery algorithms?
My approach to these problems is continually evolving, and I look forward to further contributing
to this field.



CHAPTER 1

Landscape Hardness Of Bernoulli Group Testing

Disclamer: This project was joint work with Ilias Zadik. The following presentation is adapted
from the paper [51]. Where appropriate, the exposition follows the original paper. Proof of
the below given results are found in [51], the relevant sections and lemmas are provided for the
reader’s convenience.

Notation. We use standard asymptotic notation. For any two positive sequences An, Bn, n ∈
N, we write An = O (Bn) if and only if lim supn An/Bn < +∞, An = Ω(Bn) if and only if
Bn = O (An), An = Θ (Bn) if and only if An = O (Bn) and Bn = O (An), An = o (Bn) if and
only if limn An/Bn = 0 and An = ω(Bn) if and only if Bn = o (An).
We say that a sequence of events (An)n∈N happen asymptotically almost surely (a.a.s) if and
only if limn→∞ P(An) = 1 as n → +∞ .
Given a function f of possibly many variables, one of which is γ, define ∂γf to represent the
derivative of f with respect to the variable γ. We also denote for q1, q2 ∈ [0, 1], the two point
Kullback-Leibler (KL) divergence by

D(q1||q2) = q1 log(q1/q2) + (1 − q1) log((1 − q1)/(1 − q2)). (0.1)
Also we denote for any C > 1,

HC := h−1
2 (2 − 2/C), (0.2)

where h2 is the left branch of the binary entropy function.
Finally, throughout the paper, we denote some important positive constants by Ci, i ∈ N.
Importantly, Ci will represent a specific constant when defined and will never change its value
between two instances. There will also be a collection of constants using a different notation
(such as C > 0) and these constants can vary from context to context.

1. Getting Started: Constraint Satisfaction Problems

Many problems in statistics and optimization fall under the category of (random) constraint
satisfaction problems (CSPs). Such a problem is defined by the triple (X , D, C), where: (1) X is
a sequence of variables, typically representing a signal to be estimated or some abstract set of
variables to optimize over; (2) D is the domain of each X variable in the sense that Xi ∈ X can
only take values in Di; finally, (3) C is a set of (possibly random) constraints1 enforced on the
set X .
Solving a CSP entails the demonstration of—either one or all—solutions X∗ where every
constraint in C is satisfied. Often time the worst case outcome of the randomized CSPs leads to
a problem being significantly harder than the typical case, wherein we care about events that
occur with (with respect to some notion of size in the problem) probability 1 − o(1). Both this
chapter and Chapter 3 will study such problems in this typical setting.
A large set of problems that serve as proxies for studying algorithmic efficiency are CSPs. To
demonstrate this commonality, we describe three distinct CSPs: (1) Compressed Sensing and

1Note, the computer science literature usually assumes some explicit form for these constraints, say written
in a <scope, relation> form. For ease of presentation, I omit how a constraint may is explicitly structured and
leave their definition abstract.
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1. GETTING STARTED: CONSTRAINT SATISFACTION PROBLEMS 6

Sparse Tensor PCA, (2) Graph Coloring and (3) Group testing; the third problem is the main
focus of this chapter.
Compressed Sensing and Sparse Tensor PCA: The sparse tensor PCA problem, considered
in the matrix case by [43] and the tensor case by [58], is a famed model for demonstrating
statistical and computational complexity. We prescribe the matrix version of this problem below,
and leave the tensor case to Chapter 3.
Given a vector θ ∈ {v ∈ {0, 1}n : ||v||0 = k}, with k ∈ [n], we receive the observation

Y = λ

k
θθ⊤ + W (1.1)

where W ∈ N is an i.i.d. Gaussian matrix and λ can possibly scale with n and k. Converting this
problem to a CSP is rather straight forward. Define X = {v ∈ {0, 1}n : ||v||0 = k}, D = {0, 1}n

and the constraint set C can enforce, say, ⟨θ, v⟩ ≥ .8 or a sufficient amount of posterior mass
being given by v conditional on Y .
Much is now understood for this problem, specifically in the study of computational hardness.
A smattering of results can be found justifying statistical-to-computational gaps [58, 66,
39, 46, 30], meaning that Bayes rule (with some agreed upon “natural” prior) does achieve the
desired constraints at some signal-to-noise ratio (SNR), but no polynomial time algorithm can
achieve similar feats for the same SNR. The exact definition of the SNR depends on the scaling
chosen in model (1.1) but is usually a function of λ. Studies have also demonstrated a secondary
computational-to-local gap [3, 4, 18], which suggests efficient polynomial time algorithms that
achieve an optimal SNR must be “global” in nature and the “local” algorithmic counterparts
need a significantly larger SNR. The latter gap is studied for this model in Chapter 3.
Graph Coloring: Another example of a CSPs is the class of graph coloring (or vertex
assignment) problems. Perhaps the most well-known graph coloring problem is the Four Color
Theorem [11]. The general problem setup is as follows:
Given a graph G = (V, E) with a vertex set V and edge set E , we are given a number of colors
[a] and aim to construct a coloring function f : V → [a] where in two adjacent vertices v1, v2 ∈ V
have f(v1) ̸= f(v2). This problem has close ties to more traditional CSPs and often can be
mapped to a SAT problem [36]. Graph coloring can be expressed as a CSP under the choice of
X = V, D = (Di)i∈V where Di = [a], and where C enforces the constraint that adjacent vertices
must have a different color.
Under the random model that each possible edge (v, u), where v, u ∈ V, has probability p of
being present in E (i.e. the well known Erdös-Renyi p-model). This model for edge probabilities
is studied from the sum of squares perspective in [45] and a statistical physics’ framework derived
from the cavity method in [6].
Group Testing: Finally, we dial in on the main focus of this chapter, group testing. Introduced
by [24], consider a vector σ∗ ∈ {0, 1}n where ||σ∗||0 = k ∈ [n]; where the coordinates given ones
are chosen uniformly at random. The statistician then assigns N group tests, where, for each
group test, a subset S ⊂ [n] is proposed and the observation

Result(S) =
{

+ if S ∩ σ∗ ̸= ∅
− otherwise.

.

is received. Due to its simplicity, the group testing problem has found many applications
[47, 65, 73, 63, 64, 54, 5]. A large portion of which rely on the assumption that k is known (at
least approximately) and is far smaller than n. For this reason the scaling of k = Θ(nα)—for
some α ∈ (0, 1)—is chosen.
Even under this definition, there exists a dichotomy in how (and when) to apply each group test.
There is the adaptive case where the results of subsequent group tests can inform the assignment
of the next group test, or the non-adaptive case where the assignment of each group test is fixed,
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and the results are given all at once. A comprehensive overview of these variants can be found in
[1] and a comparison of lower bounds for estimation using Fano’s method can be found in [70].
This chapter concerns the non-adaptive version of group testing, where each subset S is random
samples from [n] by including each element with an independent probability q, known as a
Bernoulli q design. The exact choice of q may depend on n, k or N—as we will see later.
Such a design is attractive for its simplicity and ease of implementation. Given these random
group test assignments and their corresponding outcomes, the goal is to construct and estimator
σ̂ ⊂ [n] where ||σ||0 = k and

lim
n

|σ̂ ∩ σ∗|/k = 1, (1.2)

asymptotically almost surely (a.a.s.) with respect to the randomness of the prior of σ∗ and the
design of the group tests. In words, we need to name k individuals of which a 1 − o(1) fraction
of them are infected with high probability.

1.1. Statistical-To-Computational Gaps In Group Testing. Information theoretic
arguments prove that, when N ≤ (1 + ε) log2

(n
k

)
for some ε > 0, there does not exist designs

for group testing that lead to successful recovery [1]. The converse result also holds, when
N ≥ (1 + ε) log2

(n
k

)
, there exist designs (one example of which is a Bernoulli q design) that lead

to successful recovery [1] in the sense of (1.2). Indeed, any k subset of the n individuals that is
covers2 sufficiently many positive tests almost perfectly recovers σ∗ a.a.s. as n → +∞ (see e.g.,
[40, Lemma 5]). Thus, a simple brute force search over all k subsets will produce a successful
recovery for any such value of N tests.
Although the Bernoulli group test design has favorable properties, a major challenge is the
existence of a polynomial time algorithm for successful recovery when N = (1 + ε) log2

(n
k

)
for small enough ε > 0. Additionally, the relation of group testing to the N P-hard set-cover
problem suggests that a brute force search over all k-subsets may be unavoidable for N close
to log2

(n
k

)
. An important note is that these results do not imply there is a “fast” way to

recover σ∗. The best known algorithm to date is Separate List decoding [1, 69], which requires
N ≥ (log 2)−1 log2

(n
k

)
tests. It remains unknown if any polynomial time algorithm can beat the

constant (log 2)−1 in this setting. As discussed in the introduction to this chapter, the difference
in N when a.a.s. recovery is possible and when a polynomial run time algorithm exists is
a statistical-to-computational gap. Confirmation of this gap was found in [20] from the low-degree
perspective [38]. Specifically, [20] proved that no O(log(n))-degree polynomial estimator can
recover σ∗ when N < (log 2)−1 log2

(n
k

)
for k = Θ(nα) with α sufficiently small. This result is

significant due to a conjecture [38] which suggests the class of O(log(n))-degree polynomials is a
proxy for the class of all polynomial-time estimators.
An alternative perspective to the low-degree view comes from a direct study on the “landscape”
of the group testing. Here, [40] attempted to prove or disprove the existence of the Overlap
Gap Phenomenon for inference [32], we refer to this property as b-OGP for the remainder of
this chapter. B-OGP postulates that some level set of an objective divides the set of candidate
solutions with said objective or less (say with the goal of minimization) into two sets, a “good”
set aligned well with the true solution and a “bad” with poor alignment. This suggests local
algorithms—such as low-temperature MCMC methods (see e.g., [29, 32, 4, 33, 16, 19])—are
unable to escape the bad region as they are unable to “jump” over this gap. Moreover, b-OGP
is known to coincide with the threshold for the slow-to-fast mixing of low-temperature MCMC
methods for: (1) sparse regression [32, 19], (2) planted clique [33], and (3) sparse tensor PCA
[4, 19]. See Definition 2.1 for a rigorous definition of b-OGP .
Interestingly, [40] concluded that, under sufficient concentration of certain key quantities
around their expectation, that a first moment function (often referred to as annealed in
statistical physics [82]) proves that b-OGP never occurs for Bernoulli group testing for any

2We say that a k-subset of individuals “covers” a given test if at least one of the k individuals took part in
this test.
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N ≥ (1+ε) log2
(n

k

)
, ε > 0. Of particular surpise is that this threshold corresponds to information-

theoretic possible recovery, not the expected algorithmic threshold of [20] discussed previously.
Indeed, if this conclusion holds, it would represent the first time that an MCMC method
could provably outperform the set of O(log(n))-degree polynomials, contradicting many current
predictions in the literature of statistical-to-computational gaps [38]. A major motivation for
this chapter is to determine whether such an advantage exists for Bernoulli group testing.
To recap this discussion, we provide a more precise definition of the group testing problem in
the form of bipartite graphs. We then further detail a vital post-processing step that is common
for group testing [40].

1.2. A Rigorous Definition Of Bernoulli Group Testing. We start with properly
defining the Bernoulli group testing instance. Consider n to be the number of individuals. We
assume that n grows to infinity and all other growing parameters grow as a function of n. We
can represent group testing as a bipartite graph G = (V1, V2, E) where V1 = [n], V2 = [N ] and
the edge (i, j) is present in E if and only if individual i is included in test j. Such a bipartite
graph is visualized in Figure 1.

n individuals

…

+ - - + + - + + + - -…

N tests

Figure 1. A realization for an instance of Bernoulli group testing.

Definition 1.1. Fix some constants α ∈ (0, 1) and C > 1. We call the (α, C)-group instance the
following setting. Among the n individuals, we assume there is a subset of k = ⌊ nα ⌋ infected
ones, denoted by σ∗, which are chosen uniformly at random among all k-subsets of [n].
The statistician observes N =

⌊
C log2

(n
k

) ⌋
group tests, where each individual participates in

each test with an assignment probability q ∈ (0, 1) satisfying

(1 − q)k = 1
2 .

As mentioned earlier, we aim to construct an estimator σ̂ given an (α, C)-instance of group
testing where (1.2) holds.

Remark 1.2. We make a few remarks on the choice of the parameters. First, we have C > 1
as the choice of C = 1 is the information-theoretic threshold for group testing [1]. Second,
the assumption on q is standard in Bernoulli group testing; it is motivated by the information
theory idea that it is optimal to “halve” the number of individuals in each test. This heuristic is
buttressed by results showing that a (time-inefficient) σ̂ exists for this q when C > 1 [40, Lemma
5]. Third, for convince, we often represent q in the asymptotic form q = (log(2) + o(1))/k and
denote the number of positive tests as M = (1 + o(1))N/2 a.a.s. as n → +∞.
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1.3. Post-Processing With COMP. This section describes a post-processing step which
is applied as a first step to a vanilla Bernoulli group testing instance, recall this was pictured in
Figure 1. This processing follows from the simple observation that if an individual participated
in a negative test, then they cannot be infected. Thus, it is natural to restrict the candidate
infected individuals to those which did not participate in any negative test, a technique known
as Combinatorial Orthogonal Matching Pursuit (COMP) [1]. If C > 2 from Definition 1.1 then
COMP outputs only the infected individuals a.a.s. as n → +∞ , therefore recovering σ∗ [1].
This leads us to reduce our set of parameters to 1 < C < 2 for the remainder of this chapter.
Moreover, in this regime where 1 < C < 2, [51, Lemma 6.1] and [51, Lemma 6.2] (which follow
from standard concentration of measure inequalities), imply that there are M = (1 + o(1))N/2
positive tests and p = (1 + o(1))n(k/n)C/2 + k remaining individuals that are possibly infected.
Pictorially, this post-processing step when applied to Figure 1, results in Figure 2.

P possibly defective individuals

…

+ + + + + +…

M positive tests

Figure 2. A realization for an instance of Bernoulli group testing, now with the
COMP post-processing applied.

2. Main Contributions

Notation: These results will use the notation | · | to refer to || · ||0 and for two vectors σ, σ′ ∈ Rn

we denote σ ∩ σ′ as the Hadamard product.
This section formally presents the landscape b-OGP results from [51], resulting in our lower
bounds for low-temperature MCMC methods. In all that follows, as explained in Section 1.3
we consider only the p possibly infected individuals and subsets σ of them. Similar to [40],
the first key step is to study the following (random) restricted optimization problems over
ℓ ∈ {0, 1, . . . , k},

ϕ(ℓ) := min{H(σ) : |σ| = k, |σ ∩ σ∗| = ℓ},

where H : Rn → R is the following Hamiltonian,
H(σ) := # of positive tests non-covered by σ/M.

The non-monotonicity of ϕ(ℓ) is known to be linked with b-OGP [32], defined as follows.

Definition 2.1. Let constants ζ1, ζ2 ∈ [0, 1] with ζ1 < ζ2, threshold value r = rn > 0 and
height value δ = δn > 0. A group testing instance exhibits the bottleneck Overlap Gap Property
(b-OGP ) for parameters ζ1, ζ2, r, δ if the following conditions hold.

(1) There exist size k subsets σ1, σ2 with 1
k |σ1 ∩ σ∗| ≤ ζ1, 1

k |σ2 ∩ σ∗| ≥ ζ2, for which it holds
max{H(σ1), H(σ2)} < r.

(2) For any k-subset σ with |σ ∩ σ∗| ∈ [ζ1, ζ2] it holds H(σ) ≥ r + δ.
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It is well-known in the literature that b-OGP is related to the (non)-monotonicity of ϕ(ℓ). Indeed,
[40, Lemma 20] implies that the non-monotonicity of ϕ(ℓ) is necessary for the existence of b-OGP
and a simple argument, used for example in [33, Theorem 2], implies that the non-monotonicity
of ϕ(ℓ) is also sufficient for the existence of b-OGP .
Characterizing ϕ(ℓ) leads to studying the count of size k subsets σ which have a given overlap ℓ
and objective value t.

Definition 2.2. For t ∈ {0, 1, . . . , M}, ℓ ∈ {0, 1, . . . , k} define Zt,ℓ to be the random variable
Zt,ℓ = |{σ : |σ| = k, |σ ∩ σ∗| = ℓ, σ leaves at most t positive tests uncovered}|

Notice that ϕ(ℓ) ≤ t/M if and only if Zt,ℓ ≥ 1. Hence, it suffices to find the minimal t > 0
such that Zt,ℓ ≥ 1 a.a.s. as n → +∞. We first detail how—hueristically—we can use Zt,ℓ to
approximate ϕ(ℓ), therefore getting a better view of the landscape of group testing.
Following a method proposed by [40], we can define an implicit “first-moment” equation in t of
the form,

E[Zt,ℓ] = 1. (2.1)
The motivation for this choice is two-fold. To explain this, let us fix a ℓ ∈ {0, 1, . . . , k}.

(a) If for some t1 > 0 it holds that E[Zt1,ℓ] = o(1), then by Markov’s inequality Zt1,ℓ = 0
a.a.s. as n → +∞ , and therefore ϕ(ℓ) ≥ t1. This is customary called the first moment
method.

(b) On the other hand, if for some t2 > 0 (ideally relatively “close” to t1 > 0) it holds
that E[Zt2,ℓ] = ω(1) and the distribution of Zt2,ℓ concentrates, for example with
Var[Z2

t2,ℓ] = o(E[Zt2,ℓ]2), then Zt2,ℓ ≥ 1 a.a.s. as n → +∞ , giving ϕ(ℓ) ≤ t2. This is
customary called the second moment method.

Thus, if tℓ is the “first-moment” solution for (2.1) with respect to t and one establishes sufficient
concentration of Zt,ℓ for t ≈ tℓ, then one could naturally predict that a.a.s. as n → +∞ , it holds

ϕ(ℓ) ≈ tℓ. (2.2)

As an example we plot the solution to (2.1), given implicitly in [40, Definition B.6], for the set
of parameters (n = 275, C = 1.1, α = .02).

ℓ

t
:E

[Z
t,

ℓ]
=

1

Figure 3. The plot of the unconditional first moment function given in (2.1),
the above plot was calculated under the choice of parameters (n = 275, C =
1.1, α = .01).

Under the assumption that the true minimizer constrained to some level of overlap concentrates
around its expectation, we can treat the above curve as a proxy for the function ϕ(ℓ). The
immediate observation that the curve in Figure 3 is decreases as ℓ increases implies that as
we would attempt a minimization of H(σ) ≈ t we naturally will increase the overlap ℓ while
decreasing the objective value. Indeed, this was the conclusion of [40]—up to a conjectured
success of the second moment method [40, Conjecture B.9]; the landscape does not demonstrate
b-OGP as for each level set of t = t0 the set of ℓ providing such an objective or lower is connected
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and contains ℓ = k. Suggesting that this constraint satisfaction problem is far simpler than
other, b-OGP demonstrating problems.
It is worth noting that similar problems have demonstrated that the approximation (2.2) usually
holds. Examples of sucess for this method include sparse regression [32, 19], planted clique [33]
and sparse tensor PCA [4, 19].

2.1. The Conditional First Moment Function. A crucial contribution of this work is
demonstrating that in Bernoulli group testing (2.2), as well its conclusion on non-existence of
the b-OGP , are incorrect due to the presence of rare events. Notice that one can consider a
variation of the first-moment equation (2.1) under a conditioned event A,

E[Zt,ℓ|A] = 1. (2.3)
The key idea is that a conditional first moment method also holds: if A occurs a.a.s. as
n → +∞ , then for any t′

1 > 0, with E[Zt′
1,ℓ|A] = o(1), it must hold that ϕ(ℓ) ≥ t′

1 a.a.s. as
n → +∞ , with the potential t′

1 being much larger than t1 coming from the vanilla first moment
method. Albeit a natural idea—no such conditioning has been required in the analysis of
similar sparse problems [32, 33, 4, 19].
We first define the key conditioning event.

Lemma 2.3 ([20], Section 9.2.1 (arxiv version)). Consider an (α, C) instance of group testing.
If a is an element of the set{

a : log(2)C(a log(a) − a + 1) >
α

1 − α

}
, (2.4)

then for
A := {deg(i) ≤ 2aqM, ∀i ∈ σ∗}

it holds that P (A) = 1 − o(1).

Using this choice of A in equation (2.3), we denote by t′
ℓ = t′

ℓ(A) the (now conditional) first
moment solution of (2.3) with respect to t given the value of ℓ ∈ {0, 1, . . . , k}. One could aim to
solve for t′

ℓ and seek to get a simpler formula for it. Using linearity of expectation, standard
concentration of measure asymptotics, and a direct computation with (2.3) (Given in [51, Section
5]), we indeed get a simpler (but still implicit) set of equations satisfied by a very close proxy to
t′
ℓ.

To explain the derived equations, notice that both t and ℓ take values in growing regions,
{0, 1, . . . , M} and {0, 1, . . . , k} respectively. Hence, it is convenient to re-parameterize our
setting in terms of the proportional overlap ℓ

k = x ∈ [0, 1]. Moreover, we also denote our proxy
for the re-scaled quantity t′

ℓ
M = t′

xk
M by y(x) ∈ [0, 1]. To define y(x) we first remind the reader the

definition of the two point KL divergence from (0.1). We now define y(x) as follows.

Definition 2.4. Consider r(x) := 4 · 2−x(1 − 2−x), s(x) := 1 − 2x−1, with x ∈ [0, 1], α ∈ (0, 1),
C ∈ (1, 2), constants C1, C2, C3 > 0, and a an element of the set (2.4).
For any x ∈ [0, 1] define the (C1, C2, C3)-first moment function at x, denoted by y = y(x) as the
solution to the equation,

1
M

log
((

k

⌊ xk ⌋

)(
p − k

⌊ (1 − x)k ⌋

))
= (1 − y)D

(2a log(2)x
1 − y

∣∣∣∣∣∣∣∣r(x)
)

+ D(y||s(x)) (2.5)

satisfying the following four constraints,
2a log(2)x

1 − y
≤ (1 − C1)r(x) (2.6)

y ≤ (1 − C2)s(x) (2.7)
2a log(2)x ≤ (1 − C1)r(x) (2.8)
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D

(
1 − 2a log(2)x

(1 − C1)r(x)

∣∣∣∣∣∣∣∣s(x)
)

+ 2a log(2)x
(1 − C1)r(x)D((1 − C1)r(x)||r(x)) ≤ (1 − C3)(1 − x)(2 − C) log(2)/C

(2.9)

Often we will reference the region of x where (x, y(x)) satisfy (2.6)-(2.9) , in which there is an
implicit choice of α, C, C1, C2, C3, a.

The definition of the first moment function is unfortunately quite technical. For this reason, we
defer explaining the exact relation between t′

ℓ/M and y(x) to Section [51, Section 5]and proceed
with a few high level explanatory remarks.

Remark 2.5. The equation (2.5) turns out to be equivalent to (2.3) up to lower order terms.
This is an outcome of a standard concentration of measure argument on the product Bernoulli
distribution that constraints (2.6) and (2.7) allow to be applied. Moreover, under constraints
(2.6) and (2.7), the additional constraints (2.8) and (2.9) allow us to restrict to values of x that
the first moment function y(x) provably exists and is unique. The proof of this fact is given in
[51, Section 5.2]. Moreover, as long as the first moment function exists on an interval, a similar
argument allows us to conclude the continuous differentiability of y(x) on the interval (see also
[51, Section 5.2]).

Remark 2.6 (The role of C1, C2 and C3). The introduction of the constants C1, C2 and C3 in
the definition is purely for technical convenience. They do not change the value of the solution
to y(x) in (2.5), they simply slightly restrict the region of x where (x, y(x)) is defined to avoid
certain degeneracies in our arguments in [51, Section 5]. For this reason, we consider them to be
arbitrarily small constants.

Remark 2.7. Lastly, we highlight that often in what follows (but not always) we consider the
values of x to be restricted on the set {0, 1/k, 2/k, . . . , 1}. In those cases, for notational simplicity
and when clear from context, we drop the floor function from the binomial coefficients in (2.5).

As a follow-up to Figure 3, we can compare the solution to [40]’s vanilla first moment function
and the conditional first moment function from (2.3) in Figure 4. We use the same parameters
as Figure 3 with the additional choice of a = 1.17, defining the conditional event in Lemma 2.3.

ℓ

t : E[Zt,ℓ|A] = 1

t : E[Zt,ℓ] = 1

Figure 4. The plot of the conditional first moment function given in (2.3), the
above plot was calculated under the choice of parameters (n = 275, C = 1.1, α =
.01, a = 1.17).

Immediately, we see that the conditional first moment function in is no longer decreasing. In fact,
when ϕ(ℓ) ≈ tℓ where tℓ is the solution to (2.3), then the non-montonicity of the black curve in
the above figure suggests that group testing would display b-OGP for this (α, C) group testing
instance. Moreover, if we can prove sufficient concentration then we could pick t ≈ H(σ) = .025
and see that the set of ℓ which achieve such a solution will be separated into the “good” and
“bad” sets given in the introduction.
Of course, to actually study the typical case of group testing, we must provide rigorous justification
for this annealed heuristic. For visual simplicity we “stitch” together the conditional first moment
function (where it exists) with the unconditional first moment function (where the conditional
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ℓ

t
:E

[Z
t,

ℓ|A
]=

1

(a) Take the derivative (or, in reality, a
discrete analogue of the derivative) of the
first moment function and show, for some
ε > 0, that is the derivative is positive for
ℓ/k ∈ [0, ε]. This idea is desribed in [51,
Section 8] and given rigorously in Theorem
2.11.

ℓ

t
:E

[Z
t,

ℓ|A
]=

1

(b) Using the first moment method, we
prove for ℓ such that y(ℓ/k) exists that the
curve ϕ(ℓ) cannot pass through the red re-
gion. The difference between the top of the
red region and the black curve will vanish
as n → ∞ with probability 1 − o(1). This
idea is described in [51, Section 6] and rig-
orously stated in Theorem 2.13.

ℓ

t
:E

[Z
t,

ℓ|A
]=

1

(c) Using the second moment method, we prove that
at ℓ = 0, the difference between ϕ(ℓ) and the solution
to the conditional first moment function will vanish as
n → ∞ with probability 1 − o(1). This upper bound
is represented by the blue dot at ℓ = 0. The blue
dot at ℓ = k and t = 0 is due to the fact that the
true solution always covers every test. This idea is
described in [51, Section 7] and rigorously stated in
Theorem 2.13.

Figure 5. The three steps to verifying b-OGP .

variate does not exist). In Figure 5, we visualize the technical feats that lead to the conclusion
of b-OGP for some parameters of Bernoulli group testing.
Upon reinspecting Figure 5 and Definition 2.1, we can see that rigorously verifying these 3 steps
is sufficient for b-OGP to occur.

2.2. Local Monotonicity Of A First-Moment Function. Recall that our goal is to
prove that ϕ(ℓ) (ℓ ∈ {0, 1, . . . , k}) is non-monotonic for some regime of α, C to conclude the
existence of b-OGP . Moreover, as we aim to approximate ϕ(ℓ) using the deterministic y(ℓ/k),
a natural question is whether y(ℓ/k) is non-monotonic. On top of that, following the plots in
Figure 5, it is natural to expect that the non monotonicity to take place around ℓ/k ≈ 0. Hence,
we now focus on whether there exists a region of x = ℓ/k close to 0 where we can prove the
non-monotonicity behavior of y(x).
To answer this question, we first naturally need to guarantee that for some ε > 0 the first
moment function exists for all x ∈ [0, ε] which, as explained in Remark 2.5 it is guaranteed if
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the constraints (2.6)-(2.9) are satisfied for all x ∈ [0, ε]. The following assumption suffices to
guarantee this part.

Assumption 2.8. We assume that the parameters (α, C, a, C1, C3) satisfy

D

(
1 − a

2(1 − C1)
∣∣∣∣1

2

)
≤ (1 − C3)2 − C

C
log(2) (2.10)

and
a

2(1 − C1) < 1, (2.11)

where C1, C3 > 0 and a being a valid choice from (2.4).

Because of the complexity of the assumption, we plot the range of α and C for which Assumption
2.8 holds in Figure 6, by setting a and C1, C3 to their lowest possible values. It is worth pointing
out that the assumption is satisfied for any 1 < C < 2 as long as α > 0 is small enough.

1.0 1.2 1.4 1.6 1.8 2.0

0.0

0.2

0.4

0.6

0.8

1.0

C

α

Figure 6. The green and orange regions in the above plot represent the values
of α and C for which conditions (2.10) and (2.11) from Assumption 2.8 are
satisfied under the choice of a from the lower boundary of the set (2.4) and
setting C1, C3 = 0. Note that the region in green is a subset of the region in
orange.

Under Assumption 2.8, we have the following result.

Lemma 2.9. If (α, C, a, C1, C3) satisfy Assumption 2.8, then there exists an ε > 0 such that
the first moment function y(x) according to Definition 2.4 for x ∈ [0, ε] exists and is unique
a.a.s. as n → +∞ (with respect to the randomness of p, M). Moreover, y(x) is continuous and
differentiable over [0, ε].

The proof of this result is given in [51, Section 5.2].
Now that we have established that the first moment function exists and is unique around zero,
we also make the following assumption on our parameters which allows us to conclude the desired
monotonicity of the first moment function at 0.

Assumption 2.10. Recall HC from Definition 0.2. We assume that (α, C, a) satisfies

C <
1 − α

1−α

a
(
1 − log

(
a

2(1−HC)

))
+ HC − 1

,

and that a is a valid choice from (2.4).
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This cumbersome assumption appears quite naturally by calculating the discrete derivative of
y(ℓ/k) around ℓ/k ≈ 0 and checking when it is strictly positive (See [51, Section 8]). Given a
pair (α, C), if one chooses a to be the lowest feasible value from (2.4), then the pairs (α, C) that
satisfy this assumption are given in Figure 7. In particular, we highlight that the condition is
valid for all 0 < C < C∗ ≈ 1.4749 for α > 0 sufficiently small.

1.0 1.1 1.2 1.3 1.4 1.5

0.00

0.02

0.04

0.06

0.08

0.10

C

α

1.470 1.472 1.474 1.476 1.478 1.480

0.00000

2×10
-6

4×10
-6

6×10
-6

8×10
-6

0.00001

Figure 7. The region in red represents the values of α and C for which Assump-
tion 2.10 holds when choosing of a from the lower boundary of the set (2.4).

Now, under the above assumptions we prove that indeed the first moment function must increase
near 0.

Theorem 2.11. If the parameters (α, C, a, C1, C3) satisfy Assumption 2.8 and Assumption 2.10,
then, a.a.s. as n → +∞ (with respect to the randomness of p, M), there exist constants ε1 > 0
and δ1 > 0 such that for all 0 ≤ ℓ ≤ ε1k it holds

y(ℓ/k) − y(0) ≥ δ1ℓ/k.

The proof of the theorem is given in [51, Section 8].

2.3. Local Monotonicity Of ϕ(ℓ) Via First Moment Function Approximations.
From Theorem 2.11, we know that y(ℓ/k) increases for all ℓ ≤ εk for some small ε > 0. We
now investigate whether ϕ inherits this monotonic increase near zero from the first moment’s
functions behavior. To establish this, it suffices to show that y(ℓ/k) − o(1) a.a.s. lower bounds
ϕ(ℓ) over the region ℓ/k ∈ [0, ε] and demonstrate an equivalent y(0) + o(1) a.a.s. upper bound
for ϕ(0).
Similar to the above result on the first moment function, the following result on ϕ(ℓ) is subject
to a few parameter assumptions. This assumption is again rather cumbersome, an outcome of an
involved second moment method argument that leverages it. Crucially, however, this assumption
is satisfied for all 1 < C < 2 when α is sufficiently small (see Figure 8). We also direct the reader
to [51, Section 9.1] for more details on this assumption.

Assumption 2.12. The pair of parameters (α, C) satisfy α < 28/1000 and

C < 21 − 2α

1 − α
.

Moreover, the pair satisfies the following two conditions with HC from Definition 0.2,

C

[
(1 − HC)(1 − log(2(1 − HC))) − h2(HC)

2 − 7
√

α

1 − α

(1
2 log(2(1 − HC))

)]
> 4α/(1 − α) (2.12)
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and

C

[
h2(Hc)

2 + 1
2 log

(1 − HC

HC

)(
1 − HC − 5

√
α

1 − α

)
+ HC − 1

]
> 3α/(1 − α). (2.13)

Using this assumption we can then get our desired bounds on ϕ(ℓ).

Theorem 2.13. If the parameters (α, C, a, C1, C3) satisfy Assumption 2.8 and Assumption 2.12,
then there exists an ε′ > 0 such that, for all x = ℓ/k ∈ [0, ε′], we have a.a.s. as n → +∞ that,

ϕ(ℓ) ≥ y(ℓ/k) − O(1/k).

Moreover, a.a.s. as n → +∞,

ϕ(0) = y(0) + o(1) = HC + o(1).

This result combines an a.a.s, as n → +∞ lower bound on ϕ(ℓ) for all ℓ = 0, 1, . . . , k as well as
an a.a.s, as n → +∞ upper bound on ϕ(0), both of which are shown in [51, Section 6] and [51,
Section 7]. The former relies on a relatively straightforward application of a conditional first
moment method. The latter part is highly non-trivial to prove. We prove it via an elaborate
conditional second moment method and is far more technical due to the necessity for delicate
control over shared positive tests between two non-infected individuals.

1.0 1.2 1.4 1.6 1.8 2.0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

C

α

1.90 1.92 1.94 1.96 1.98 2.00

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Figure 8. A visual representation for when Assumption 2.12 holds. The x-axis
represents the value of C and the y-axis represents the value of α. The blue
region contains the values for which the condition (2.12) holds, and the yellow
region contains the values for which the condition (2.13) holds. The intersection
of both colors represents the region where both conditions are satisfied.

2.4. B-OGP In Bernoulli Group Testing. Combining Theorem 2.13 with Theorem 2.11
lets us directly conclude that ϕ(ℓ) is increasing for small ℓ/k. Moreover, notice that ϕ(k) = 0 by
the definition of σ∗. Combining this fact with Theorems 2.11 and 2.13, with α and C satisfying
Assumptions 2.8, 2.10, 2.12, we can conclude that ϕ(ℓ) is non-monotonic and in particular, using
standard arguments in the literature, that b-OGP appears.

Theorem 2.14. For an (α, C) instance of group testing, a valid choice of a from (2.4) and
arbitrarily small C1, C3 > 0 satisfy Assumptions 2.8, 2.10, 2.12, then there exists δ > 0 and
0 < ε1 < ε2 such that for all ℓ with ℓ/k ∈ [ε1, ε2], we have a.a.s. as n → +∞ , ϕ(ℓ) − ϕ(0) ≥ δ.
In particular, as ϕ(k) = 0, b-OGP holds in this regime.
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Proof of Theorem 2.14. Using Assumption 2.8 we invoke Lemma 2.9 to conclude the
existence of an ε > 0 such that the first moment function y(x) exists for all x ∈ [0, ε].
Setting ε1 = ε/3 and ε2 = 2ε/3, Assumption 2.8, Assumption 2.10 and Assumption 2.12
allows us to invoke Theorem 2.11 and Theorem 2.13 to give for some C4 > 0 that, for any
ℓ ∈ {ℓ : ℓ/k ∈ (ε1, ε2)}, a.a.s. as n → +∞ ,

Using Theorem 2.13, ϕ(ℓ) − ϕ(0) ≥ y(ℓ/k) − y(0) − o(1)

Using Theorem 2.11, ≥ C4
ℓ

k

We can set δ = C4ε1 > 0 to prove that for ℓ/k ∈ [ε1, ε2], we have ϕ(ℓ) − ϕ(0) ≥ δ a.a.s. as
n → +∞ . Hence we can conclude by Theorem 2.13 that a.a.s. as n → +∞

min
ℓ:ℓ/k∈[ε1,ε2]

ϕ(ℓ) ≥ ϕ(0) + δ ≥ y(0) + δ/2.

Furthermore, choosing ζ1 = ε1, ζ2 = ε2 and r = y(0) + δ/2 gives the b-OGP since ϕ(k) = 0 and
therefore, a.a.s. as n → +∞ , it holds max{ϕ(0), ϕ(k)} = ϕ(0) ≤ r. ■

Recall that in the Figures 6, 7, 8 we plotted the regions of α and C such that the required
Assumptions 2.8, 2.10, 2.12 for Theorem 2.14 hold. Meaning that any pair (α, C) in each of
these colored regions satisfies Theorem 2.14.

2.5. Implied Failure Of Markov Chains. The primary motivation of this work is the
performance of Markov chains in constructing an estimator σ̂. Recall that our goal is to minimize
the (normalized) Hamiltonian,

H(σ) = # of positive tests non-covered by σ/M,

over all k-subsets σ. We focus on “local” Markov chains, meaning the underlying neighborhood
graph on the k-subsets of [n] connects two subsets if and only if their Hamming distance equals to
2, i.e., the chain swaps one individual at every step. This neighborhood graph is also commonly
referred to as the Johnson graph [37, p. 300]. A common stationary distribution from such a
process is given by πβ(σ) ∝ exp(−βH(σ)), for a sufficiently large choice of β.

Definition 2.15. Let dH be the Hamming distance on k-subsets. Given a group testing instance,
we define the Glauber Dynamics over k-subsets and inverse temperature β to have transition
kernel Pβ(σ, σ′) given by,

Pβ(σ, σ′) =


1

k(p−k)
exp(−βH(σ′))

exp(−βH(σ′))+exp(−βH(σ)) if dH(σ, σ′) = 2, |σ| = k,∑
σ′:dH(σ,σ′)=2

1
k(p−k)

exp(−βH(σ))
exp(−βH(σ′))+exp(−βH(σ)) if σ = σ′

0 otherwise.

Using now also standard bottleneck arguments in the literature [33, 49], we conclude via the
existence of b-OGP that all local MCMC methods sampling from πβ for β large enough, take a
super-polynomial time to recover σ∗. This result is formally described in the following theorem
and is the main contribution of this work, answering the main question of [40].

Corollary 2.16. For an (α, C) instance of group testing, a valid choice of a from (2.4) and
arbitrarily small C1, C3 > 0 satisfy Assumptions 2.8, 2.10, 2.12, then there exists ε1, ε2 ∈ (0, 1)
with ε1 < ε2 and an ε1 dependent constant Cε > 0 such that if β ≥ Cεk log(p/k) the following
holds a.a.s. as n → +∞.

For any local Markov chain on the Johnson graph with stationary distribution πβ, there exists
an initialization for which the Markov chain requires at least exp(Ω(k log(p/k))) iterations to
reach any k-subset σ with |σ ∩ σ∗| ≥ ε2k.

The proof of the corollary is given in [51, Section 10].



CHAPTER 2

Universality Of Non-Seperable Approximate Message Passing

Disclamer: This project is ongoing joint work with Zhou Fan and Tianhao Wang. This
manuscript is in the final stages of editing and will—hopefully—be submitted soon. For proofs
of many of these results I will simply cite [27]. I pray the location of these references do not
change too much.

Notation. Scalars are denoted in regular font, while vectors, matrices, and tensors are bold,
with lowercase for vectors and uppercase for higher-order tensors. For example, an element of a
vector v is v1.

For a function f : Rn×q → Rn, we write ∂i,jf(X) := ∂f(X)i

∂Xij
, i.e., the derivative of the i-th

component of f with respect to the (i, j) entry of X. Given partitions π, τ of [n], we write τ ≥ π
(or equivalently π ≤ τ) if every block of π is contained in a block of τ . We denote the number of
blocks in π by |π|, and for any i ∈ [n], let [i] be the block in π containing i. The identity matrix
is denoted by Id.
For a matrix X, we define the projection onto its column space as PX := X(X⊤X)†X⊤, with
P ⊥

X = Id − PX for its orthogonal complement.
To simplify indexing when subscripts become cumbersome, we use Python-style notation: entries
of x ∈ Rn and W ∈ Rn×n are written as xi ≡ x[i] and Wij ≡ W [i, j]. More generally, for a
matrix Σ:

Σi1:i2,j1:j2 = Σ[i1:i2, j1:j2] =

Σi1j1 · · · Σi1j2
... . . . ...

Σi2j1 · · · Σi2j2

 ∈ R(i2−i1)×(j2−j1).

The notation σmin or λmin refers to the minimum singular value of a matrix, while σmax or λmax
refer to the maximum. We use the shorthand x1:k = (x1, . . . , xk) and X1:k = (X1, . . . , Xk).
Finally, we denote the number of connected components in a graph G as c(G) and use d= to
signify equality in distribution.

1. A Brief Reflection On Approximate Message Passing

Approximate Message Passing (AMP) is a class of iterative algorithms whose study has been a
major focus in statistical and computational research in the past 15 years. AMP originates from
applications in compressed sensing [23] and relies on an ingenious conditioning technique found by
[12] to study a set of iterative solutions for the TAP equations [74] on the Sherrington-Kirkpatrick
model (see [59] for an introduction to this model and the mean-field approach).
To define an AMP algorithm, let W ∈ Rn×n be a symmetric random matrix, u1 ∈ Rn a
deterministic initialization vector, and F = {f2, f3, f4, . . .} a sequence of functions where
ft+1 : Rn×t → Rn. We then consider the following iteration,

zt = Wut −
t−1∑
s=1

btsus

ut+1 = ft+1(z1, . . . , zt).
(1.1)

18
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The coefficients {bts}s<t are scalar Onsager correction terms whose values are deferred to
Definition 2.1. Although iteration (1.1) seems rather abstract, it can be cast into a wide variety
of inference and optimization problems, as we see soon.
The benefit of using algorithm (1.1) is that under the assumptions on the random matrix W
and the functions f2, f3, f4, . . ., the empirical distribution of the iterates z1,i, z2,i, · · · “look” like
i.i.d draws from a mean zero Gaussian random variable with variance determined by the choice
of u1 and F .

Definition 1.1. If W ∼ GOE(n) has W [i, j] ∼ N (0, 1/n) for i < j and W [i, i] ∼ N (0, 2/n)
then we say it has GOE(n) law.

Under the assumption that each f ∈ F is Lipschitz and separable, meaning, with Z ∈ Rn×t, that
f(Z) = (f̊(Z[1, :]), . . . , f̊(Z[n, :])) for a Lipschitz function f̊ : Rt → R, and W being GOE(n) in
law, convergence of this empirical distribution is proven by [9] and later extended by [41]. An
overview of these techniques can be found in [28].
Since its introduction, AMP has been used to rigorusly analyze many inference problems in
the—so called—thermodynamic limit where the number of observations and the number of
parameters are divergent, yet their ratio is fixed. Alongside the previously mentioned compressed
sensing [23], there has been applications in generalized linear models under the GAMP [67] and
VAMP [68] extensions to AMP, analysis of high dimensional robust M-estimation [22], and many
more [28]. Moreover, AMP is the backbone of the analysis of more general classes of algorithms,
two examples are: (1) the set of first order methods [14, 13, 61] where AMP can be mapped
injectively to any such algorithm, and (2) the famed series of tensor programs [78, 79, 80, 81]
which characterizes the limiting weights of multi-layer machine learning architectures in the
“mean-field” limit. In addition, AMP is conjectured to be an optimal algorithm for many inference
problems, previous work has verified the connection of AMP to Bayes optimal estimation [48],
low-degree methods [60], and—even when AMP is found to be non-optimal—higher order
message passing analogues close this gap [76]. It has also been shown in [44] that unrolled
denoising networks converge to a special choice of F called Bayes-AMP [28].
Due to the vast set of problems AMP can be used to solve, many lines of research have been
devoted to relaxing the conditions on both the function class F and the random matrix W.
We discuss the former now and return to the latter in a moment.

1.1. Relaxation of the Function Class F . Differing assumptions on F can be found
as early as [8] where they considered F to be a subset of the set of separable polynomials.
To our knowledge, The most general set of assumptions—before the results provided in this
chapter—were first found in [10], considered general Lipschitz functions f : Rn → Rn (which do
not need to be separable) to make up to class F . These results were further extended to graph
valued functions in [34]. An application of this non-separable AMP on the analysis of sliding
window convolution algorithms can be found in [52].

1.2. Relaxation of the Random Matrix W. Perhaps the most prevalent relaxation of
the random matrix assumption is that W is a Wigner matrix.

Definition 1.2. W ∈ Rn×n is a Wigner matrix if W is symmetric, (W [i, j] : 1 ≤ i ≤ j ≤ n)
are independent, and there is a constant Ck > 0 for each k = 2, 3, . . . (not depending on n) such
that

– EW [i, j] = 0 for all i, j ∈ [n]
– EW [i, j]2 = 1/n for all i ̸= j ∈ [n], and EW [i, i]2 ≤ C2/n for all i ∈ [n]
– E|W [i, j]|k ≤ Ckn−k/2 for each k ≥ 3 and all i, j ∈ [n].

Recall, as a special case, W ∼ GOE(n) when W [i, j] ∼ N (0, 1/n) for i < j and W [i, i] ∼
N (0, 2/n).
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Results on the limiting behavior of the iterates Z = z1, z2, . . . from (1.1) have shown that the
empirical law of the rows of Z converges to the identical limit if W was GOE(n) in law. For
this reason, results of this kind are called universality results. The first instance of such an
argument dates back to the seminal work of [8] which was the first to prove the universality of
separable polynomial AMP. This work introduced the now common technique of unrolling the
algorithm (1.1) into a linear combination of computational graphs. Years later, the separable
Lipschitz case was then argued by [15] using an interpolation technique.
Different relaxations of W exists for orthogonally invariant matrices [26], for semi-random
matrices [25], and rotationally invariant matrices [75]. The third results involved a method
similar to [8] where they consider a polynomial approximation of an AMP algorithm and
then show the unrolled polynomial AMP has a limiting value only dependent on the first and
second moment of W. These sequence of universality results also share a strong connection to
computational graphs of matrices [55] and the literature on (traffic) free probability [56, 53].
The benefit of this relaxation on W is the added set of applications that can now be analyzed
using AMP. This idea was used, implicitly1, in [21] and has found applications in Qualitative
group testing (a generalization of the problem from Chapter 1) analyzing the limiting number of
tests to achieve some desired level of estimation error [71, 72].
The main goal of this work is to “glue” these two lines of research together, i.e. we answer the
following question:

Does there exist abstract conditions on F and W that encompasses both the relaxations of the
function class and the random matrix described above?

For the case of F being non-separable satisfying Definition 2.18 and W being Wigner, we answer
the question in the affirmative.

2. Main Contributions

It is shown in [10] that when W ∼ GOE(n), under certain asymptotic conditions for the sequence
of functions {ft}, the iterates {zt} of the above AMP algorithm are characterized by a Gaussian
state evolution. A version of this state evolution is reviewed in the following definition.

Definition 2.1. Let Σ1 = ∥u1∥2
2/n ∈ R1×1. For each t ≥ 1, given Σt ∈ Rt×t, let [Z1, . . . , Zt] ∈

Rn×t have i.i.d. rows with distribution N (0,Σt), and define Σt+1 ∈ R(t+1)×(t+1) by

Σt+1[1:t, 1:t] = Σt, Σt+1[1, t+1] = Σt+1[t+1, 1] = 1
n
E[ft+1(Z1:t)⊤u1]

Σt+1[s+1, t+1] = Σt+1[t+1, s+1] = 1
n
E[ft+1(Z1:t)⊤fs+1(Z1:s)] for j = 1, . . . , t.

Then the state evolution corresponding to (1.1) is given by the sequence of laws N (0,Σt).
The Onsager correction terms {bts}s<t in (1.1) are defined as

bts = 1
n
E[divs ft(Z1, . . . , Zt−1)],

where divs is the divergence with respect to the s-th column of the input.

The above definitions differ slightly from [10] in that we define Σt and {bts}s<t to be n-dependent,
instead of assuming that these quantities have asymptotic limits as n → ∞.

1This paper essentially proved a very small universality result comparing a specific AMP algorithm when
changing the law of W from GOE(n) to a two point valued distribution.
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2.1. State Evolution For Gaussian matrices. We first provide a stronger form of the
state evolution guarantee shown in [10] when W ∼ GOE(n), for functions {ft} that may be
non-Lipschitz and instead have polynomial growth.

Remark 2.2. Throughout, for notational convenience, we will identify the initialization u1 ≡ f1(·)
as the output of a constant function f1, and understand fs+1(z1:s) for s = 0 as u1.

Assumption 2.3. For each fixed t ≥ 1:

(a) There are constants Ct, ct > 0 such that ct < λmin(Σt) ≤ λmax(Σt) < Ct and
maxs<t |bts| < Ct for all n.

(b) If Z1:t ∈ Rn×t has i.i.d. rows with distribution N (0,Σt) and E1:t ∈ Rn×t is any random
matrix in the probability space of Z1:t such that

P[∥E1:t∥F ≥ (log n)C0 ] ≤ n−(1+ε)

for some constants C0, ε > 0, then for each s = 0, . . . , t, with probability at least 1−n−d

(for any d > 1), there exists a constant C (only dependent on d, C0, ε, t) such that

1
n

∣∣∣ft+1(Z1:t + E1:t)⊤fs+1(Z1:s + E1:s) − E[ft+1(Z1:t)⊤fs+1(Z1:s)]
∣∣∣ ≤ C logC(n)√

n
, (2.1)

1
n

∥∥∥(Z1:t + E1:t)⊤fs+1(Z1:s + E1:s) − E
[
Z⊤

1:tfs+1(Z1:s)
]∥∥∥

2
≤ C logC(n)√

n
.

The following proposition shows that Assumption 2.3 holds in the case where {ft} are Lipschitz,
or more generally, in many settings where {ft} are only locally Lipschitz with polynomial growth.

Proposition 2.4. Suppose ∥u1∥2 ≤ (log n)C1
√

n. Suppose furthermore, for each t ≥ 1 and any
C0, ε > 0, there exists a n-dependent convex set A ⊆ Rn×∞ and constants C1, δ > 0 depending
only on C0, ε, t such that, for each At ⊂ {x ∈ Rn×t : ∃y ∈ Rn×∞ with (x, y) ∈ A},

(1) With z ∈ Rn×t, maxz∈At ∥z∥2 ≤ (log n)C1
√

n.
(2) ∥ft+1(z)∥2 ≤ (log n)C1

√
n and ∥ft+1(z) − ft+1(z′)∥2 ≤ (log n)C1∥z − z′∥2 for all z, z′ ∈

At.
(3) If Z ∈ Rn×t has i.i.d. rows with distribution N (0,Σ) for any Σ ∈ Rt×t satisfying

∥Σ∥op ≤ C0, and E ∈ Rn×t is any matrix in the probability space of Z satisfying

P[∥E∥F ≥ (log n)C0 ] ≤ n−(1+ε),

then
E∥ft+1(Z)∥4

2 ≤ C1n2, P[Z + E /∈ At] ≤ n−(1+δ).

Then Assumption 2.3 holds.

The proof of this result is given in [27, Apppendix A].

Example 2.5. Below is an example for how to check the conditions of Proposition 2.4. Let
g(z) = (z + sin(5z))2 and let f : Rn → Rn be the function applying g to each coordinate of the
input. Let A = [−C logC(n), C logC(n)]n, where C > 0 (dependent on C0 from Proposition 2.4)
can be chosen large enough to satisfy P(Z+E) ∈ A described in Proposition 2.4. From this choice
of A, maxz∈A ∥z∥2 ≤ C logC(n)

√
n and ∥f(z)∥2 ≤ (C logC(n) + 1)2√

n for all z ∈ A. Moreover,
d

dzi
f(z)i = 2(zi + sin(5zi))(1 + 5 cos(5zi)) which is bounded by a poly-log(n) factor for any z ∈ A.

With Zi
i.i.d∼ N (0, Σ), the expectation E[∥f(Z)∥4

2] ≤
∑n

i,j=1 E[(1 + Zi)2(1 + Zj)2] ≤ C ′n2, for a
constant C ′ > 0 dependent on C0, leading to each condition in Proposition 2.4 satisfied.

Under Assumption 2.3, for W ∼ GOE(n), we can relate the iterates z1, . . . , zt to random
variables defined by the state evolution matrix Σt.
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Theorem 2.6 (Strong GOE State Evolution). Suppose W ∼ GOE(n), and Assumption 2.3
holds for the state evolution sequence {Σt} and Onsager terms {bts} of Definition 2.1.
Then for any fixed t ≥ 1, the AMP iterates z1, . . . , zt may be written as

[z1, . . . , zt] = [Z1, . . . , Zt] + [E1, . . . , Et],

where [Z1, . . . , Zt] ∈ Rn×t has i.i.d. rows with distribution N (0,Σt), and the residual term
satisfies ∥[E1, . . . , Et]∥F ≺ 1.

We call Theorem 2.6 a “strong state evolution”, as the error bound ∥[E1, . . . , Et]∥F ≺ 1 is
stronger than what is needed to show the usual state evolution guarantee of approximation of
the empirical distribution of rows of z1:t with vanishing error under a metric of weak convergence.
(For this, a bound of ∥[E1, . . . , Et]∥F ≺ n1/2−ε would suffice.) This result is proven in [27, Section
3]. This strong state evolution implies the convergence of a large class of test functions evaluated
at the AMP iterates, stated in the following corollary.

Corollary 2.7. Under the setting of Theorem 2.6, fix any t ≥ 1 and consider a function
ϕ : Rn×t → R given by

ϕ(z1, . . . , zt) = 1
n

ϕ1(z1, . . . , zt)⊤ϕ2(z1, . . . , zt), ϕ1, ϕ2 : Rn×t → Rn, (2.2)

where the functions ϕ1 and ϕ2 satisfy (2.1) from Assumption 2.3 with ϕ1 and ϕ2 in the place of
ft+1 and fs+1 respectively. Then

ϕ(z1, . . . , zt) − E[ϕ(Z1, . . . , Zt)] ≺ n−1/2.

2.2. Universality For Tensor Networks. When the functions {ft} of (1.1) and test
functions ϕ1, ϕ2 of (2.2) are polynomials, the value

1
n

ϕ1(z1, . . . , zt)⊤ϕ2(z1, . . . , zt)

may be expressed as a linear combination of contracted values of tensor networks, constructed
from a class of deterministic tensors T and the Wigner matrix W. We describe in this section
an abstract definition of such a network and a condition for universality of its contracted value.
Let p : Rn×t → Rn be a polynomial function of maximum total degree D ≥ 0 (i.e. each coordinate
of the output of p is a multivariate polynomial of total degree at most D in its inputs in Rn×t).
For each d = 1, . . . , D, let St,d be the collection of all mappings σ : [t] → [d]. Then there exist
tensors T(0) ∈ Rn and T(σ) ∈ (Rn)⊗(d+1) for each d = 1, . . . , D and each σ ∈ St,d, such that

p(z1, . . . , zt) = T(0) +
D∑

d=1

∑
σ∈St,d

T(σ)[zσ(1), . . . , zσ(d), ·] (2.3)

We write T[z1, . . . , zk, ·] ∈ Rn to denote the partial contraction whose jth coordinate is given by∑
i1,...,ik∈[n] T [i1, . . . , ik, j]z1[i1] . . . zk[ik]. Thus T(0) is the constant term of p, and {T(σ)}σ∈St,d

represent the terms of p of degree d.

Definition 2.8. Given a collection of tensors

T ⊆
⊔
k≥1

(Rn)⊗k

of any orders k ≥ 1, a polynomial p : Rn×t → Rn is T -representable if it admits a representation
(2.3) where T(0) ∈ Rn ∩ T and T(σ) ∈ (Rn)⊗(d+1) ∩ T for each d = 1, . . . , D and σ ∈ St,d.

We note that these tensors T(0), T(σ) are, in general, not symmetric in their arguments. Fur-
thermore, for any given polynomial function p, the choice of tensors {T(σ)}σ∈St,d

that represent
it in (2.3) is not unique.
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Definition 2.9. An ordered multigraph G = (V, E) is an undirected multigraph with vertices
V and edges E , having no self-loops and no isolated vertices, and having a specified ordering
e1, . . . , edeg(v) of the edges incident to each vertex v ∈ V . Here, deg(v) is the degree of v, defined
as the total number of edges incident to v counting multiplicity. G is connected if it consists of
a single connected component.
A tensor labeling L of G is an assignment of a tensor Tv ∈ (Rn)⊗ deg(v) to each vertex v ∈ V,
where the order of Tv equals the degree of v. We call (G, L) a tensor network. The value of
this tensor network is

valG(L) =
∑

i∈[n]E

∏
v∈V

Tv[ie : e ∼ v] (2.4)

where [ie : e ∼ v] denotes the ordered tuple of indices [ie1 , . . . , iedeg(v) ], and e1, . . . , edeg(v) are the
ordered edges incident to v.

When G is connected, the value valG(L) may be understood as the scalar value obtained by
contracting (in any order) the tensor-tensor product associated to each edge. When G consists
of multiple connected components, valG(L) factorizes as the product of these values across the
different components. We clarify that the specification of an edge ordering is needed to define
this value, because the tensors {Tv}v∈V may not be symmetric.

v1 v2 v M v

T

1

v1v1v2v3

⟨v1, v2⟩ v⊤Mv
∑

i

∑
j,k,ℓ,r T[i, j, k, ℓ, r]v1[j]v1[k]v2[ℓ]v3[r]

Figure 1. Some example tensor networks and their corresponding value (note
the rightmost image is under some implicit ordering of the edges).

In our asymptotic analyses, the multigraphs G will always be fixed and independent of n, while
the tensor labels Tv will be n-dependent.
Definition 2.10. Given a collection of deterministic tensors T ⊆

⊔
k≥1(Rn)⊗k and a random

matrix W ∈ Rn×n ≡ (Rn)⊗2, a (T , W)-labeling of G is a tensor labeling of G such that each
tensor label Tv belongs to T ∪ {W} (where only vertices with deg(v) = 2 are labeled by W),
and such that no two adjacent vertices connected by an edge are both labeled by W.

The relation of Definition 2.9 to the AMP algorithm (1.1) is clarified by the following consequence
of (2.3), which we prove in [27, Appendix B]. (Here f1 is a constant function identified with the
initialization u1, c.f. Remark 2.2.)
Lemma 2.11. Fix any t ≥ 1, and suppose that f1, . . . , ft and the test functions ϕ1, ϕ2 defining ϕ
in (2.2) are T -representable polynomial functions with maximum total degree D independent of
n. Suppose also maxr<s≤t |bsr| < Ct for a constant Ct > 0.
Then there exist constants C, M > 0 depending only on (t, D, Ct), a list of connected ordered
multigraphs G1, . . . , GM independent of n, and (T , W)-labelings L1, . . . , LM of G1, . . . , GM

together with coefficients a1, . . . , aM ∈ R with each |am| < C, such that

ϕ(z1, . . . , zt) =
M∑

m=1

amvalGm(Lm)
n

.

Let us denote by Idk ∈ (Rn)⊗k the “identity” diagonal tensor with entries
Idk[i1, . . . , ik] = 11{i1 = · · · = ik}.
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We omit the subscript Id ≡ Idk when its order is clear from context. We consider the following
Bounded Composition Property for a class of deterministic tensors T .

Definition 2.12. An ordered multigraph G = (VId ⊔ VT , E) is bipartite if its vertex set is the
disjoint union of two sets VId, VT , and each edge of E connects a vertex of VId with a vertex of
VT .
A (Id, T )-labeling L of a bipartite ordered multigraph G is a tensor labeling of G such that
each vertex u ∈ VId is labeled with Iddeg(u), and each vertex v ∈ VT has a label Tv ∈ T .

Definition 2.13. A collection of deterministic tensors T ⊆
⊔

k≥1(Rn)⊗k satisfies the Bounded
Composition Property (BCP) if the following holds:
Let G = (VId ⊔ VT , E) be any bipartite ordered multigraph (independent of n) such that G is
connected and all vertices in VId have even degree. Then there exists a constant C := C(G) > 0
independent of n such that for any (Id, T )-labeling L of G,

|valG(L)| ≤ Cn.

Remark 2.14. The BCP is a nuanced property of the class of tensors T , of particular interest
is the fact that BCP implies that Assumption 2.3 holds for whatever class of functions that are
T -representable. This result is proven in [27, Section 5.1].

Example 2.15. If the functions f1, . . . , ft and ϕ1, ϕ2 in Lemma 2.11 are coordinate-separable
polynomial functions with all coefficients bounded in magnitude by B > 0, then they are T -
representable by the class

T =
⊔
k≥1

{
diagonal tensors T ∈ (Rn)⊗k with nmax

i=1
|T[i, . . . , i]| ≤ B

}
.

This class satisfies the BCP: For any connected bipartite ordered multigraph G = (VId ⊔ VT , E)
and any (Id, T )-labeling of G, it is easily checked that

valG(L) =
n∑

i=1

∏
v∈VT

Tv[i, . . . , i]

and hence |valG(L)| ≤ B|VT |n. We will discuss examples of non-coordinate-separable functions
in the following sections.

The following theorem establishes universality of valG(L) under the above BCP condition for
the tensor class T . Its proof is given in Section 3.

Theorem 2.16 (Universality of tensor network value). Let T ⊆
⊔

k≥1(Rn)⊗k be a class of
tensors satisfying BCP, and let W, W′ be two Wigner matrices satisfying Definition 1.2. Fix
any connected ordered multigraph G independent of n, let L be a (T , W)-labeling of G, and let
L′ be the (T , W′)-labeling that replaces W by W′. Then almost surely,

lim
n→∞

( 1
n

valG(L) − 1
n

valG(L′)
)

= 0.

The following is an immediate corollary of the above theorem and Lemma 2.11.

Corollary 2.17. Let T ⊆
⊔

k≥1(Rn)⊗k be a class of tensors satisfying BCP, and let W, W′ be
two Wigner matrices satisfying Definition 1.2.
Fix any t ≥ 1, and suppose that f1, . . . , ft and the test functions ϕ1, ϕ2 defining ϕ in (2.2)
are T -representable polynomial functions with maximum total degree D independent of n. Let
z1:t, z′

1:t be the iterates of (1.1) defined by these functions and W, W′ respectively. Then almost
surely,

lim
n→∞

ϕ(z1:t) − ϕ(z′
1:t) = 0.
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2.3. Universality Of Approximate Message Passing. We now apply the preceding
universality of tensor networks to deduce universality for AMP algorithms (1.1) defined by
functions satisfying the following polynomial approximability condition.

Definition 2.18. Let F =
⊔

t≥0 Ft be a class of functions, where Ft consists of functions
f : Rn×t → Rn and F0 consists of constant vectors in Rn. F is BCP-approximable if, for any
fixed C0 > 0, there exists a collection of tensors T ⊆

⊔
k≥1 Rn⊗k satisfying BCP for which the

following holds:
Choose any t ≥ 0, ft ∈ Ft, Σ ∈ Rt×t with ∥Σ∥op < C0, and any ε > 0. Let Z ∈ Rn×t have i.i.d.
rows with distribution N (0,Σ). Then

(1) For a constant D ≥ 0 depending only on C0, ε, t, there exists a (Σ, n-dependent)
polynomial function pt : Rn×t → Rn of maximum total degree D that is T -representable,
such that

1
n
E∥ft(Z) − pt(Z)∥2

2 < ε.

(2) Let z ∈ Rn×t be any random matrix satisfying, for any fixed constant D ≥ 0 and two
(n-dependent) T -representable polynomial functions q1, q2 : Rn×t → Rn of maximum
total degree D,

lim
n→∞

1
n
E q1(z)⊤q2(z) − 1

n
E q1(Z)⊤q2(Z) = 0 almost surely.

Then, for the above functions ft and pt,
1
n
E∥ft(z) − pt(z)∥2

2 < ε almost surely for all large n.

Theorem 2.19. Let W ∈ Rn×n be a Wigner matrix satisfying Definition 1.2. Let F =
⊔

t≥0 Ft

be a BCP-approximable class of functions. Suppose, for each t ≥ 1, that ft ∈ Ft and ft is
L-Lipschitz for some constant L > 0 independent of n.
For any fixed t ≥ 1, let ϕ1, ϕ2 : Rn×t → Rn also satisfy ϕ1, ϕ2 ∈ Ft and ϕ1, ϕ2 are L-Lipschitz for
some constant L > 0 independent of n. Let Σt ∈ Rt×t be the state evolution matrix in Definition
2.1, let Z1:t ∈ Rn×t have i.i.d. rows with distribution N (0,Σt), and define

ϕ(z1:t) = 1
n

ϕ1(z1:t)⊤ϕ2(z1:t).

Then almost surely

lim
n→∞

ϕ(z1:t) − Eϕ(Z1:t) → 0.

2.4. Applications To Three Function Classes. This section presents three function
classes within each of which the state evolution of the AMP algorithm (1.1) is universal for
Wigner W. We prove that these functions are BCP-approximable in [27, Section 6] and thus, by
Remark 2.14, these functions satisfy Assumption 2.3. When writing these functions, we consider
them mapping a set of m input vectors x1, . . . , xm ∈ Rn to a single outpur vector in Rn. The
vectors x1, . . . , xm represent both side information vectors (including the nromalization vector
u1) and the AMP iterates z1, . . . , zT . More details on the side information vectors is given in
[27, Section 6].

2.4.1. Local Functions. First, we consider a natural extension of seperable AMP algorithms,
where, instead of assuming that class {ft+1}t∈[T −1] is row-wise separable, we assume that each
output index has a finite number of input row depeandencies. A similar class was analyzed in [?
] where they considered “sliding window denoisers” which demonstrate such a dependency.

Definition 2.20. Consider the set of functions, for each m ∈ N, where f : Rn×m → Rn, such
that for each i, j ∈ [n] × [m], uniformly over X = (x1, . . . , xm) ∈ Rn×m where there exists a
constant C > 0 satisfying the following conditions:
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(1) Locality: Define argf (j) = {i : X[i, :] is an argument in f(X)[j]}. Similarly, define
arg−1

f (i) = {j : i ∈ argf (j)}. The function f satisfies maxij |arg−1
f (i)| + |argf (j)| ≤ C.

(2) Polynomial Growth: We have that f(X)[j] ≤ C
(
1 +

∑
i∈arg(j) ∥Xi·∥1

)C
and, for

each (k, ℓ) ∈ [n] × [t + k], ∂k,ℓf(X)[j] ≤ C
(
1 +

∑
i∈arg(j) ∥Xi·∥1

)C
, where ∂k,ℓf is the

partial derivative of f with respect to the (k, ℓ)-th entry of X.

This set of functions is named the local functions.

2.4.2. Anisotropic Functions. Another application of AMP algorithms arises with the exis-
tence of correlations in the random matrix, let Ŵ ∈ Rn×n be such a matrix. Assume that Ŵ has
the form Ŵ = K1WK2 where K1, K2 ∈ Rn×n are known matrices. Providing a state evolution
guarentee for this matrix in (1.1) is difficult as the entries of Ŵ are no longer independent.
To remedie this issue, we pass the matrix multiplication in Ŵ to the activations {ft+1}t∈[T −1].
For a given fucntion ft+1 : Rn×t → Rn, define f̂(z1, . . . , zt) = K2ft+1(K1z1, . . . , K1zt). Such a
choice elicits the following AMP algorithm,

zt = Wut −
t∑

s=1
btsus,

ut+1 = f̂t+1(zt).
(2.5)

Under the change of variables ẑt = K1zt, ût = K2ut and b̂ts = btsK1K2 give an equivalent
algorithm to (2.5),

ẑt = Ŵut −
t∑

s=1
b̂tsûs,

ût+1 = ft+1(z1, . . . , zt,γ).
(2.6)

Thus, we can endow algorithm (2.6) with the equivalent state evolution of algorithm (2.5).
Representing the conversion between these two algorithms is the following set of functions.

Definition 2.21. Consider the set, for each m ∈ N, of functions f : Rn×m → Rn such that, for
each i, j ∈ [n] × [m] uniformly over X = (x1, . . . , xm) ∈ Rn×m, there exists a constant C > 0
and function gj : Rm → R, K1, K2 ∈ Rn×n satisfying the following conditions:

(1) Anisotropic Form: There exists a vector2 a ∈ {0, 1}m such that f can be represented
as,

f(X) = K2g((a1K1 + (1 − a1)Id)X[:, 1], . . . , (amK1 + (1 − am)Id)X[:, m]),

with g = {gj}j∈[n] applied row-wise seperably.
(2) Polynomial Growth: We have that |gj(X[i, :])| ≤ C(1+∥Xi·∥∞)C and |∂jgi(X[j, :])| ≤

C(1 + ∥Xi·∥∞)C . Moreover, assume that C ′ ≤ ∥K1∥op ∨ ∥K2∥op ≤ C for some constant
C ′ > 0.

(3) ∥K1∥1 ∨ ∥K1∥∞ ∨ ∥K2∥1 ∨ ∥K2∥∞ ≤ C, or more generally, Assumption 6.2 in [27,
Section 6].

This set of functions is named the anisotropic functions.

2.4.3. Spectral Functions. A final application of an AMP algorithm is when the iterates of
(1.1) have a latent matrix structure. A clever application of Definition 2.20 or Definition 2.21
permits the use of convolution type operations, however, this class covers activations applied to
the spectrum of said matrix.

2The role played by a in this definition is to allow some inputs to be multiplied by K1 and for some to be left
unchanged.



3. UNIVERSALITY OF TENSOR NETWORKS 27

Consider a vector iterate x ∈ Rn, we assume the existence of a matricization map, mat(·) defined
as

mat(x) =
[
x⊤

1:N , x⊤
(N+1):2N , . . . , x⊤

(N(M−1)+1):NM

]
∈ RN×M ,

where N, M ∈ N, N ·M = n and N ≤ M . We also define the inverse operation, i.e. vectorization,
as vec(X) = mat−1(X). Under the assumptions that the singular values of mat(x) are equi-order
(as they would be if the matrix was i.i.d Gaussian), then we have

∥mat(x)∥2
op = max

i
σ2

i = Θ
(∑

i∈[
√

n] σ2
i√

n

)
= Θ

(
∥mat(x)∥2

F√
n

)
.

Thus, as (1.1) utilized iterates with squared two-norm of order n, ∥mat(x)∥2
F = ∥x∥2

2 = Θ(n), and
thus, ∥mat(x)∥op = Θ(n1/4). This motivates applying the normalization of n−1/4mat(x) to each
input of a spectral function leading the input matrix to have a maximum singular value of order
Θ(1). This allows one to write the spectral decomposition n−1/4mat(x) =

∑
i∈[

√
n] σiuiv⊤

i where,
by convention, σi ≥ 0 and ||ui||2 = ||vi||2 = 1 represent the singular vectors. To incorporate
multiple iterates and side information vectors, the input x is written as x =

∑ℓ
i=1 aixi, a ∈ Rℓ

for a set of vectors x1, x2, . . . , xℓ ∈ Rn and a ∈ Rℓ.

Definition 2.22. Consider the set of functions f : Rn → Rn, such that there exists a constant
C > 0 where the following conditions hold:

(1) Spectral Form: There exists a function fspec : R+ → R applied seperably to the
spectrum of a matrix, an ℓ ∈ N and vector a ∈ [ℓ] such that, where f is represented as,

f(x1, . . . , xm) = n1/4vec
(

fspec

(
mat

(
n−1/4

ℓ∑
i=1

aixi

)))
.

(2) Polynomial Growth: The above function fspec satisfies |fspec(x)| ≤ C(1 + |x|)C and∣∣∣ d
dxfspec(x)

∣∣∣ ≤ C(1 + |x|)C .

The finite span over the above set of functions is named the spectral functions.

We end this section with the following theorem. This follows from each function class being
BCP-approximable, a fact shown in [27, Section 6].

Theorem 2.23. Consider a sequence of Lipschitz activations F = {ft+1}t≥1, and two Lipschitz
test functions ϕ1, ϕ2. If F ∪ {ϕ1, ϕ2} are subsets of the local, anisotropic or spectral function
class, then the result from Theorem 2.19 holds.

3. Universality Of Tensor Networks

As the results on BCP implying universality are the most novel in this work, we present this
analysis here.

3.1. Universality In Expectation. In this section, we first show the following lemma.

Lemma 3.1. Let the ordered connected multigraph G and tensor labelings L, L′ be as in Theorem
2.16. Then there is a constant C > 0 for which

E
[ 1

n
valG(L)

]
− E

[ 1
n

valG(L′)
]

≤ Cn−1/2.

Proof. Throughout the proof, we fix the ordered multigraph G = (V, E) and a decomposition
of its vertex set V = VW ⊔ VT , where no two vertices of VW are connected by an edge. It suffices
to prove the result for tensor labelings L that assign label W to VW and labels in T to VT , for
each fixed decomposition V = VW ⊔ VT .
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For any such labeling L, taking expectation over W in the definition of the value (2.4),

E
[ 1

n
valG(L)

]
= 1

n1+|VW |/2

∑
i∈[n]E

E
[ ∏

v∈VW

n1/2W[ie : e ∼ v]
] ∏

v∈VT

Tv[ie : e ∼ v].

Let P(E) be the set of all partitions of the edge set E . Let πi ∈ P(E) denote the partition that
is induced by the index tuple i ∈ [n]E : edges e, e′ ∈ E belong to the same block of πi if and only
if ie = ie′ . We write [e] for the block of π that contains edge e. Then the above summation may
be decomposed as

E
[ 1

n
valG(L)

]
=

∑
π∈P(E)

1
n1+|VW |/2

∗∑
i∈[n]π

E
[ ∏

v∈VW

n1/2W[i[e] : e ∼ v]
] ∏

v∈VT

Tv[i[e] : e ∼ v]. (3.1)

Here, the first summation is over all possible edge partitions π = π(i), and the second summation∑∗
i∈[n]π is over a distinct index i[e] ∈ [n] for each block [e] ∈ π, where ∗ denotes that indices

i[e], i[e′] must be distinct for different blocks [e] ̸= [e′] ∈ π.

Let P(VW ) be the set of all partitions of the vertex subset VW . Given a partition π ∈ P(E), we
associate to it a partition πW (π) ∈ P(VW ) where u, v ∈ VW belong to the same block of πW (π)
if their incident edges belong to the same two blocks of π. More precisely:

Definition 3.2. For any v, u ∈ VW , let e, e′ be the two edges incident to v, and f, f ′ the two
edges incident to u. The partition πW (π) ∈ P(VW ) associated to π is such that v, u belong to
the same block of πW (π) if and only if

{[e], [e′]} = {[f ], [f ′]}

(as equality of unordered sets, where possibly [e] = [e′] and [f ] = [f ′]).
Writing [v] ∈ πW (π) for the block of πW (π) containing v, we say that these blocks [e], [e′] ∈ π
are incident to the block [v] ∈ πW (π) and denote this by [e] ∼ [v].

This definition is such that for any i ∈ [n]π of the summation
∑∗

i∈[n]π , the entries W[i[e] : e ∼ v]
and W[i[e] : e ∼ u] of W are equal if v, u belong to the same block of πW (π), and are independent
otherwise. Thus each block [v] ∈ πW (π) corresponds to a different independent entry of W. For
each k ≥ 1, define Mk ∈ Rn×n as the matrix with entries

Mk[i, j] = E[nk/2W[i, j]k], (3.2)

where Definition 1.2 guarantees that Mk is symmetric and |Mk[i, j]| < Ck for a constant Ck > 0.
Then evaluating the expectation over W in (3.1) gives

E
[ 1

n
valG(L)

]
=

∑
π∈P(E)

1
n1+|VW |/2

∗∑
i∈[n]π

∏
[v]∈πW (π)

Mk[v][i[e] : [e] ∼ [v]]
∏

v∈VT

Tv[i[e] : e ∼ v].

Here, the first product is over all blocks [v] ∈ πW (π), k[v] denotes the number of vertices of VW

in the block [v], and [i[e] : [e] ∼ [v]] is the index pair [i[e], i[e′]] for the blocks [e], [e′] incident to
[v].

Definition 3.3. π ∈ P(E) is single if some block [v] ∈ πW (π) has k[v] = 1. A block [v] ∈ πW (π)
is paired if k[v] = 2 and if its incident blocks [e], [e′] ∈ π are such that [e] ̸= [e′].
(Thus if π is not single and [v] ∈ πW (π) is not paired, then either k[v] ≥ 3 or k[v] = 2 and
[e] = [e′].)

By the vanishing of first moments of W[i, j] in Definition 1.2, if π is single then there is some
[v] ∈ πW (π) for which k[v] = 1 and hence Mk[v] = 0. By the assumption for second moments
of off-diagonal entries W[i, j], if [v] ∈ πW (π) is paired then Mk[v][i[e] : [e] ∼ [v]] = 1. Applying
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these observations above,

E
[ 1

n
valG(L)

]
=

∑
π∈P(E)

not single

1
n1+|VW |/2

∗∑
i∈[n]π

∏
[v]∈πW (π)
not paired

Mk[v][i[e] : [e] ∼ [v]]
∏

v∈VT

Tv[i[e] : e ∼ v]. (3.3)

Next, we apply an inclusion-exclusion argument followed by Cauchy-Schwarz to bound the
difference of (3.3) between L and L′. Endow P(E) with ordering by refinement: τ ≥ π if each
block of τ is a union of one or more blocks of π. We will use ⟨e⟩ ∈ τ to denote the block of τ
containing edge e, to avoid notational confusion with the block [e] ∈ π. Note that if v, u ∈ VW

belong to the same block of πW (π), then the two edges incident to v and those incident to u
belong to the same blocks [e], [e′] ∈ π, and hence also the same blocks ⟨e⟩, ⟨e′⟩ ∈ τ since τ ≥ π.
Analogous to Definition 3.2, we continue to say that ⟨e⟩, ⟨e′⟩ ∈ τ are the blocks incident to
[v] ∈ πW (π) and denote this by ⟨e⟩ ∼ [v].
Let µ(π, τ) be the inclusion-exclusion (i.e. Möbius inversion) coefficients such that, for any fixed
π ∈ P(E) whose blocks we denote momentarily by [e1], . . . , [em] (where e1, . . . , em are any choices
of a representative edge in each block), and for any function f : [n]π → R,

∗∑
i∈[n]π

f(i[e1], . . . , i[em]) =
∑

τ∈P(E):τ≥π

µ(π, τ)
∑

i∈[n]τ
f(i⟨e1⟩, . . . , i⟨em⟩).

The sum
∑

i∈[n]τ on the right side is over one index i⟨e⟩ ∈ [n] for each block ⟨e⟩ ∈ τ , and no longer
restricts indices for different blocks ⟨e⟩ ∈ τ to be distinct. Applying this inclusion-exclusion
relation to (3.3),

E
[ 1

n
valG(L)

]
=

∑
π∈P(E)

not single

∑
τ∈P(E):τ≥π

µ(π, τ)
n1+|VW |/2

∑
i∈[n]τ

∏
[v]∈πW (π)
not paired

Mk[v][i⟨e⟩ : ⟨e⟩ ∼ [v]]
∏

v∈VT

Tv[i⟨e⟩ : e ∼ v]

︸ ︷︷ ︸
:=valǦ(Ľ)

.

(3.4)

We clarify that here, πW (π) in the first product of valǦ(Ľ) continues to be defined by the
partition π (not by τ), and [i⟨e⟩ : ⟨e⟩ ∼ [v]] is the index tuple [i⟨e⟩, i⟨e′⟩] for the blocks ⟨e⟩, ⟨e′⟩ ∈ τ

that are incident to [v] ∈ πW (π). For later reference in the proof, it is helpful to interpret valǦ(Ľ)
in (3.4) as the value of a (π, τ)-dependent tensor network (Ǧ, Ľ) constructed as follows:

– Ǧ = (V̌, Ě) has three disjoint sets of vertices V̌ = V̌W ⊔ V̌Id ⊔ V̌T , and each edge e ∈ Ě
connects a vertex of V̌Id with a vertex of either V̌W or V̌T .

– The vertices of V̌Id are the blocks of τ . Each vertex ⟨e⟩ ∈ V̌Id ≡ τ is labeled by Id, and
the ordering of its edges is arbitrary (as the tensor Id is symmetric).

– The vertices of V̌W are the blocks of πW (π). Each vertex [v] ∈ V̌W ≡ πW (π) is
labeled by Mk[v], and has two edges (ordered arbitrarily) connecting to the blocks
⟨e⟩, ⟨e′⟩ ∈ VId ≡ τ that are incident to [v].

– V̌T is the same as the vertex set VT of G, with the same tensor labels. For each vertex
v ∈ VT with ordered edges e1, . . . , em in G, the vertex v ∈ V̌T ≡ VT has ordered edges
connecting to ⟨e1⟩, . . . , ⟨em⟩ ∈ V̌Id ≡ τ .

An example of this construction of (Ǧ, Ľ) from (G, L, π, τ) is depicted in Figure 2. It is direct to
check that the quantity valǦ(Ľ) defined in (3.4) indeed equals the value of this tensor network
as defined in (2.4), where the label Id on each vertex ⟨e⟩ ∈ V̌Id ensures that only summands
which have the same index value i⟨e⟩ ∈ [n] for all edges incident to ⟨e⟩ contribute to (2.4).
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Then, defining M′
k and valǦ(Ľ′) as in (3.2) and (3.4) with W′ in place of W, we have∣∣∣∣E[ 1

n
valG(L)

]
− E

[ 1
n

valG(L′)
]∣∣∣∣ ≤

∑
π∈P(E)

not single

∑
τ∈P(E):τ≥π

|µ(π, τ)|
n1+|VW |/2 ×

∣∣∣∣∣ ∑
i∈[n]τ

( ∏
[v]∈πW (π)
not paired

Mk[v][i⟨e⟩ : ⟨e⟩ ∼ [v]] −
∏

[v]∈πW (π)
not paired

M′
k[v][i⟨e⟩ : ⟨e⟩ ∼ [v]]

) ∏
v∈VT

Tv[i⟨e⟩ : e ∼ v]

︸ ︷︷ ︸
=valǦ(Ľ)−valǦ(Ľ′)

∣∣∣∣∣.

(3.5)

W W W W W

T1 T2 T3 T4 T5

[1] [2] [3] [1][1] [3] [2] [1] [3] [1]
→

M2 M3

Id3Id7 Id4

T1 T2 T3 T4 T5

[1][2] [3]

{[1], [2]} {[1], [3]}

V̌Id

V̌W

V̌T

Id Id Id10 Id8

T1 T2 T3 T4 T5

T1 T2 T3 T4 T5

[2]1 [2]2 [1] [3]

V1
T

V2
T

ṼId

→

(G, L)

(Ǧ, Ľ)

(G̃, L̃)

Figure 2. An example conversion from (G, L) → (Ǧ, Ľ) → (G̃, L̃), nodes are
labeled by the tensor assigned to them. (Top Left) (G, L) is the initial graph
we start with, depending on the choice of partition, we assign each edge in the
graph to some block. (Top Right) (Ǧ, Ľ) is the graph G restructured to represent
that each block of edges must have the identical index; specific blocks in π and
πW are shown beside the node which represents them. (Bottom) (G̃, L̃) is the
graph (Ǧ, Ľ) after removing the nodes in V̌W and then copying the graph along
V̌Id. Again beside each node is the block they represent, with multiplicity in the
superscript if the block is good, as [2] is.

Definition 3.4. Given partitions π, τ ∈ P(E) with τ ≥ π, a block ⟨e⟩ ∈ τ is bad if there exists
at least one block [v] ∈ πW (π) that is not paired and that is incident to ⟨e⟩, and good otherwise.
We write τ = τ b ⊔ τ g where τ b and τ g are the sets of bad and good blocks, respectively.

Note that if |τ b| = 0, i.e. all blocks of τ are good, then every block [v] ∈ πW (π) must be paired,
so the products

∏
[v]∈πW (π):not paired defining valǦ(Ľ), valǦ(Ľ′) are both trivial and equal to 1,
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and valǦ(Ľ) − valǦ(Ľ′) = 0. When |τ b| ≠ 0, these products involve only indices corresponding
to ⟨e⟩ ∈ τ b and not ⟨e⟩ ∈ τ g. Thus

valǦ(Ľ) − valǦ(Ľ′) =
∑

i∈[n]τb

[( ∏
[v]∈πW (π)
not paired

Mk[v][i⟨e⟩ : ⟨e⟩ ∼ [v]] −
∏

[v]∈πW (π)
not paired

M′
k[v][i⟨e⟩ : ⟨e⟩ ∼ [v]]

)
×

∑
i∈[n]τg

∏
v∈VT

Tv[i⟨e⟩ : e ∼ v]
]
11{|τ b| ≠ 0}.

Applying Cauchy-Schwarz over the outer summation
∑

i∈[n]τb ,

|valǦ(Ľ) − valǦ(Ľ′)| ≤
[ ∑

i∈[n]τb

( ∏
[v]∈πW (π)
not paired

Mk[v][i⟨e⟩ : ⟨e⟩ ∼ [v]] −
∏

[v]∈πW (π)
not paired

M′
k[v][i⟨e⟩ : ⟨e⟩ ∼ [v]]

)2]1/2

×

[ ∑
i∈[n]τb

( ∑
i∈[n]τg

∏
v∈VT

Tv[i⟨e⟩ : e ∼ v]
)2]1/2

11{|τ b| ≠ 0}.

Then applying that |Mk[i, j]| ≤ Ck for a constant Ck > 0 and all i, j ∈ [n], there exists a
constant C(π, τ) > 0 for which the first factor is at most C(π, τ)n|τb|/2, so

|valǦ(Ľ) − valǦ(Ľ′)| ≤ 11{|τ b| ≠ 0}Cπ,τ n|τb|/2
[ ∑

i∈[n]τb

( ∑
i∈[n]τg

∏
v∈VT

Tv[i⟨e⟩ : e ∼ v]
)2

︸ ︷︷ ︸
:=valG̃(L̃)

]1/2

. (3.6)

We interpret the quantity valG̃(L̃) in (3.6) as the value of a (π, τ)-dependent bipartite tensor
network G̃ = (ṼId ⊔ ṼT , Ẽ) with (Id, T )-labeling L̃, constructed as follows:

– ṼId has one vertex for each block ⟨e⟩ ∈ τ b, which we denote also by ⟨e⟩ ∈ ṼId, and two
vertices for each block ⟨e⟩ ∈ τ g, which we denote by ⟨e⟩1, ⟨e⟩2 ∈ ṼId. These are labeled
by Id, and the ordering of their edges is arbitrary.

– ṼT = V1
T ⊔ V2

T consists of two copies of the original vertex set VT of G, with the same
tensor labels. For each v ∈ VT , we denote its copies by v1 ∈ V1

T and v2 ∈ V2
T . Suppose

v ∈ VT has ordered edges e1, . . . , em in the original graph G. If ⟨ei⟩ ∈ τ b, then the ith

edge of both v1 ∈ V1
T and v2 ∈ V2

T connect to ⟨ei⟩ ∈ ṼId. If ⟨ei⟩ ∈ τ g then the ith edge
of v1 ∈ V1

T connects to ⟨ei⟩1 ∈ ṼId, and the ith edge of v2 ∈ V2
T connects to ⟨ei⟩2 ∈ ṼId.

An example of this construction is also illustrated in Figure 2. Note that since each edge e ∈ E of
the original graph G = (V, E) is incident to at least one vertex v ∈ VT (because no two vertices
of VW are adjacent), each block ⟨e⟩ ∈ τ b ⊔ τ g has also at least one vertex v ∈ VT that is incident
to an edge of that block. Then it is direct to check that the quantity valG̃(L̃) of (3.6) is indeed
the value of this tensor network as defined in (2.4).

Finally, we bound valG̃(L̃) using the given BCP property of T and a combinatorial argument.
Fixing any π ∈ P(E) that is not single, we categorize the possible types of blocks [v] ∈ πW (π)
based on k[v] (the number of vertices belonging to [v]) and on its incident blocks [e], [e′] ∈ π:

– Let N3 be the number of blocks [v] with k[v] ≥ 3
– Let N2 be the number of paired blocks [v], i.e. with k[v] = 2 and [e] ̸= [e′]
– Let N1 be the number of blocks [v] with k[v] = 2 and [e] = [e′].

Let c(G̃) be the number of connected components of G̃. We claim the following combinatorial
properties:
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(1) The number of vertices of VW satisfies |VW | ≥ 3N3 + 2N2 + 2N1.
(2) The number of blocks of τ b satisfies |τ b| ≤ 2N3 + N1.
(3) The degree of each vertex of ṼId in G̃ is even.
(4) If |τ b| ≠ 0, then the number of connected components of G̃ satisfies c(G̃) ≤ 1+2N2 +N3.

Let us verify each of these claims: (1) holds because each block [v] ∈ πW (π) counted by N1 or
N2 contains exactly k[v] = 2 vertices of VW , and each block counted by N3 contains k[v] ≥ 3
vertices.
(2) holds because any block of τ b must be incident to some block [v] ∈ πW (π) that is not paired.
Each non-paired block [v] ∈ πW (π) that is counted by N3 is incident to two distinct blocks
[e], [e′] ∈ π — hence at most two blocks in τ b because τ ≥ π — and each non-paired block
counted by N1 is incident to one distinct block [e] ∈ π — hence also one block in τ b.

For (3), consider first a bad block ⟨e⟩ ∈ τ b. By construction, the edges of its corresponding vertex
⟨e⟩ ∈ ṼId come in pairs, connecting to pairs of vertices (v1, v2). Thus ⟨e⟩ has even degree. Now
consider a good block ⟨e⟩ ∈ τ g and its corresponding vertices ⟨e⟩1, ⟨e⟩2 ∈ ṼId. Let e1, . . . , em be
the edges of G that belong to this block ⟨e⟩ ∈ τ g. If such an edge ei connects two vertices of
VT , then there are two corresponding edges in G̃ that connect these vertices of V1

T with ⟨e⟩1.
Otherwise ei connects a vertex in u ∈ VT with a vertex v ∈ VW . Since ⟨e⟩ ∈ τ g is good, the
block [v] ∈ πW (π) containing this vertex v ∈ VW must be paired — thus, there is exactly one
other vertex v′ ∈ πW (π) that belongs to [v]. If v is incident to exactly one edge in this block ⟨e⟩,
then so is v′, and if v is incident to two edges both in ⟨e⟩ (which may occur if its incident blocks
[e] ̸= [e′] ∈ π are merged into a single block ⟨e⟩ ∈ τ) then so is v′. This shows that the edges
among e1, . . . , em that connect VT to VW come in pairs, and each pair contributes two edges of
G̃ between V1

T and ⟨e⟩1. So ⟨e⟩1 has even degree. Similarly ⟨e⟩2 has even degree, which shows
(3).

For (4), note that (G̃, L̃) may be obtained from (Ǧ, Ľ) by removing all vertices of V̌W and their
incident edges from Ǧ, duplicating the remaining graph on the vertex set V̌Id ∪ V̌T into two
disjoint copies on V̌1

Id ∪ V̌1
T and V̌2

Id ∪ V̌2
T , and merging the vertices of V̌1

Id representing bad blocks
⟨e⟩ ∈ τ b with their copies in V̌2

Id while keeping the remaining vertices of V̌1
Id, V̌2

Id (representing
good blocks ⟨e⟩ ∈ τ g) distinct. We may then bound c(G̃) via the following observations:

– Ǧ is a connected graph, because the original graph G is connected by assumption.
– For any connected subgraph K of Ǧ, call it good if all vertices of K ∩ V̌Id represent

good blocks ⟨e⟩ ∈ τ g, and bad if at least one vertex of K ∩ V̌Id represents a bad block
⟨e⟩ ∈ τ b. We track the number Ng of good connected components and Nb of bad
connected components as we sequentially remove vertices of V̌W from Ǧ one at a time:

Supposing that |τ b| ̸= 0 as assumed in claim (4), the starting connected graph Ǧ is
bad, so Ng = 0 and Nb = 1. Each vertex [v] ∈ V̌W counted by N1 can be connected to
only one vertex of V̌Id, so its removal does not change (Ng, Nb). Each vertex [v] ∈ V̌W

counted by N3 is connected to at most 2 vertices of V̌Id, both of which are bad by
definition, so its removal does not change Ng and increases Nb by at most 1. Each
vertex [v] ∈ V̌W counted by N2 is connected to at most 2 vertices of V̌Id which may be
either good or bad, so its removal increases the total number of connected components
Nb + Ng by at most 1. Thus, after removing all vertices of V̌W from Ǧ, we have

Nb + Ng ≤ 1 + N2 + N3, Ng ≤ N2.

– By the above process of obtaining G̃ from Ǧ, after removing all vertices of V̌W , each com-
ponent counted by Nb results in one connected component of G̃, while each component
counted by Ng results in two connected components of G̃. Thus

c(G̃) = Nb + 2Ng,

and applying the above bounds gives c(G̃) ≤ 1 + 2N2 + N3 which is claim (4).
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We apply these combinatorial claims and the BCP property to conclude the proof: Suppose
π, τ ∈ P(E) are such π is not single, τ ≥ π, and |τ b| ̸= 0. Recalling that valG̃(L̃) factorizes as
the product of the values across connected components, and applying claims (3–4) and BCP to
each connected component of G̃, we have

valG̃(L̃) ≤ C(G̃)nc(G̃) ≤ C(G̃)n1+2N2+N3 (3.7)
for a constant C(G̃) > 0. Since G̃ is determined by π and τ , applying (3.7) and claim (2) to
(3.6) gives, for some different constant C(π, τ) > 0,

|valǦ(Ľ) − valǦ(Ľ′)| ≤ C(π, τ) · n
2N3+N1

2 · n
1+2N2+N3

2 .

Applying this and claim (1) back to (3.5), and noting that the number of such partitions
π, τ ∈ P(E) is a constant independent of n, we obtain as desired∣∣∣∣E[ 1

n
valG(L)

]
− E

[ 1
n

valG(L′)
]∣∣∣∣ ≤ C · 1

n1+ 3N3+2N2+2N1
2

· n
2N3+N1

2 · n
1+2N2+N3

2 ≤ Cn−1/2.

■

3.2. Almost-Sure Convergence. To complete the proof of Theorem 2.16, we show the
following fourth moment bound for concentration of the tensor network value around its mean.

Lemma 3.5. Let the ordered multigraph G and tensor labeling L be as in Theorem 2.16. Then
there is a constant C > 0 for which

E
[( 1

n
valG(L) − 1

n
EvalG(L)

)4]
≤ C

n2 .

Proof. We again fix the ordered multigraph G = (V, E) and a decomposition V = VW ⊔ VT

of its vertices, and consider a labeling L that assigns W to VW and elements of T to VT .
Let G⊔4 = (V⊔4, E⊔4) be the ordered multigraph consisting of four disjoint copies of G, where
V⊔4 = V1 ⊔ V2 ⊔ V3 ⊔ V4 are the four copies of V decomposed as Vj = Vj

W ⊔ Vj
T for j = 1, 2, 3, 4,

and E⊔4 = E1 ⊔E2 ⊔E3 ⊔E4 are the four copies of E . Let W1, . . . , W4 be four independent copies
of the Wigner matrix W. For any word a = a1a2a3a4 with letters a1, a2, a3, a4 ∈ {1, 2, 3, 4},
define La as the tensor labeling of G⊔4 such that for each j = 1, 2, 3, 4, vertices of Vj

W are labeled
by the matrix Waj , and vertices of Vj

T have the same labels as VT under L. Then
E[(valG(L) − EvalG(L))4]
= E[valG(L)4] − 4E[valG(L)3]E[valG(L)] + 6E[valG(L)2]E[valG(L)]2 − 3E[valG(L)]4

= E[valG⊔4(L1111) − 4valG⊔4(L1112) + 6valG⊔4(L1123) − 3valG⊔4(L1234)]

where the expectation on the last line is over the independent Wigner matrices W1, . . . , W4.
Let P(E⊔4) be the set of all partitions of the combined edge set E⊔4. For any a = a1a2a3a4, we
have analogously to (3.1)

E
[ 1

n4 valG⊔4(La)
]

=
∑

π∈P(E⊔4)

1
n4+2|VW |

∗∑
i∈[n]π

E
[ 4∏

j=1

∏
v∈Vj

W

n1/2Waj [i[e] : e ∼ v]
] 4∏

j=1

∏
v∈Vj

T

Tv[i[e] : e ∼ v]

︸ ︷︷ ︸
:=Va(π)

.

(3.8)

Let us split P(E⊔4) into three disjoint sets:

– A: Partitions π such that every block [e] ∈ π satisfies [e] ⊆ Ej for a single copy
j = 1, 2, 3, 4.

– B: Partitions π for which there is a decomposition {1, 2, 3, 4} = {j1, j2} ⊔ {k1, k2} such
that every block [e] ∈ π satisfies either [e] ⊆ Ej1 , [e] ⊆ Ej2 , or [e] ⊆ Ek1 ∪ Ek2 , and at
least one block [e] ∈ π has a nonempty intersection with both Ek1 and Ek2 .



3. UNIVERSALITY OF TENSOR NETWORKS 34

– C: All remaining partitions of P(E⊔4).

We write correspondingly

Va(A) =
∑
π∈A

Va(π), Va(B) =
∑
π∈B

Va(π), Va(C) =
∑
π∈C

Va(π)

so that E[n−4valG⊔4(La)] = Va(A) + Va(B) + Va(C). Then

E
[( 1

n
valG(L) − 1

n
EvalG(L)

)4]
=

∑
S∈{A,B,C}

V1111(S) − 4V1112(S) + 6V1123(S) − 3V1234(S). (3.9)

We now analyze separately the terms of (3.9) for S = A, B, C: For A, observe that for any π ∈ A,
since the edge sets E1, E2, E3, E4 are unions of disjoint blocks of π, the indices of each of the
matrices W1, W2, W3, W4 are distinct in (3.8). Then Va(π) has the same value for all words
a = a1a2a3a4, so V1111(π) = V1112(π) = V1123(π) = V1234(π), and hence

V1111(A) − 4V1112(A) + 6V1123(A) − 3V1234(A) = 0. (3.10)

For B, recall that each π ∈ B corresponds to a (unique) associated decomposition {1, 2, 3, 4} =
{j1, j2} ⊔ {k1, k2} where each block [e] ∈ π belongs to Ej1 , Ej2 , or Ek1∪k2 . We further decompose

Va1a2a3a4(B) = Va1a2a3a4 + Va1a2a3a4 + Va1a2a3a4 + Va1a2a3a4 + Va1a2a3a4 + Va1a2a3a4

where each term is a summation over those π ∈ B corresponding to a single such decomposition
{1, 2, 3, 4} = {j1, j2} ⊔ {k1, k2}, and the underlined positions indicate the indices {k1, k2} while
the non-underlined positions indicate the indices {j1, j2}. So for instance, Va1a2a3a4 is the
summation of Va1a2a3a4(π) over those π ∈ B for which each block [e] ∈ π belongs to either
E1 ∪ E3, E2, or E4. Note that for any such π, the indices of W2 and W4 in (3.8) are distinct
from those of {W1, W3}, and hence for any a1, a3 ∈ {1, 2, 3, 4}, the value Va1a2a3a4 is the same
for all choices of a2, a4. This type of observation, together with symmetry of Va1a2a3a4 under
permutations of the four indices and relabelings of the copies {1, 2, 3, 4}, yields the identities

V1111(B) = 6V1111 = 6V1123

V1112(B) = 3V1112 + 3V1112 = 3V1123 + 3V1234

V1123(B) = V1123 + 2V1123 + 2V1123 + V1123 = V1123 + 5V1234

V1234(B) = 6V1234.

Applying these identities shows

V1111(B) − 4V1112(B) + 6V1123(B) − 3V1234(B) = 0. (3.11)

Finally, for C, we claim that there is a constant C > 0 such that for any a = a1a2a3a4, we have

|Va(C)| ≤ Cn−2.

The proof is similar to the analysis in Lemma 3.1: Fix any a = a1a2a3a4. Associated to any
edge partition π ∈ C, consider the vertex partition πW (π) ∈ P(V1

W ⊔ V2
W ⊔ V3

W ⊔ V4
W ) such that

v, u belong to the same block of πW (π) if and only if their incident edges belong to the same
two incident blocks of π and, in addition, v ∈ Vj

W and u ∈ Vk
W for two indices j, k ∈ {1, 2, 3, 4}

such that aj = ak (i.e. v, u correspond to the same Wigner matrix Waj = Wak). Let k[v] be the
number of vertices in the block [v] ∈ πW (π), call π single if some block [v] ∈ πW (π) has k[v] = 1,
and call [v] ∈ πW (π) paired if k[v] = 2 and its incident blocks [e], [e′] ∈ π satisfy [e] ̸= [e′]. Then
evaluating the expectation over W1, . . . , W4 in (3.8), we get analogously to (3.3) and (3.4)

Va(C) =
∑
π∈C

not single

1
n4+2|VW |

∗∑
i∈[n]π

∏
[v]∈πW (π)
not paired

Mk[v][i[e] : [e] ∼ [v]]
4∏

j=1

∏
v∈Vj

T

Tv[i[e] : e ∼ v]
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=
∑
π∈C

not single

∑
τ∈P(E):τ≥π

µ(π, τ)
n4+2|VW |

∑
i∈[n]τ

∏
[v]∈πW (π)
not paired

Mk[v][i⟨e⟩ : ⟨e⟩ ∼ [v]]
4∏

j=1

∏
v∈Vj

T

Tv[i⟨e⟩ : e ∼ v]

︸ ︷︷ ︸
valǦ(Ľ)

.

(3.12)

Let τ b, τ g denote the sets of bad and good blocks of τ defined in the same way as Definition 3.4.
Then applying Cauchy-Schwarz over

∑
i∈[n]τb , we obtain analogously to (3.6)

|valǦ(Ľ)| ≤ C(π, τ)n|τb|/2
[ ∑

i∈[n]τb

( ∑
i∈[n]τg

4∏
j=1

∏
v∈Vj

T

Tv[i⟨e⟩ : e ∼ v]
)2

︸ ︷︷ ︸
:=valG̃(L̃)

]1/2
. (3.13)

Now let N3, N2, and N1 be the numbers of blocks [v] ∈ πW (π) with k[v] ≥ 3, with k[v] = 2 and
incident blocks [e] ̸= [e′] ∈ π, and with k[v] = 2 and incident blocks [e] = [e′] ∈ π, respectively.
Then the same arguments as in Lemma 3.1 show that

(1) 4|VW | ≥ 3N3 + 2N2 + 2N1.
(2) |τ b| ≤ 2N3 + N1.
(3) The degree of each vertex of ṼId in G̃ is even.

Furthermore we may count the number of connected components c(G̃) of G̃ by the following
extension of the argument in Lemma 3.1: Analogous to Lemma 3.1, Ǧ above is an ordered
multigraph with three disjoint sets of vertices V̌W ≡ πW (π), V̌Id ≡ τ , and V̌T ≡ V1

T ⊔V2
T ⊔V3

T ⊔V4
T ,

and G̃ is again obtained from Ǧ by removing all vertices of V̌W , duplicating the resulting graph
on V̌Id ∪ V̌T , and merging the two copies of vertices in V̌Id that correspond to bad blocks ⟨e⟩ ∈ τ b.
Observe that:

– By definition, G⊔4 consists of 4 connected components. For any π ∈ C, there are at
least two different pairs of indices 1 ≤ j < k ≤ 4 for which a block of π has non-empty
intersection with both Ej and Ek. (Otherwise, we would have π ∈ A or π ∈ B.) Then
Ǧ has at most 2 connected components.

– Call a connected subgraph K of Ǧ good if all vertices K ∩ V̌Id represent good blocks
⟨e⟩ ∈ τ g, and bad otherwise. We again track the numbers Ng and Nb of good and
bad connected components of Ǧ as we sequentially remove vertices of V̌W . The 1 or 2
connected components of the starting graph Ǧ can be either good or bad. Removing a
vertex [v] ∈ V̌W counted by N1 does not change (Ng, Nb), removing a vertex [v] ∈ V̌W

counted by N3 does not change Ng and increases Nb by at most 1, and removing a
vertex counted by N2 increases Nb + Ng by at most 1. Hence, after removing all vertices
of V̌W from Ǧ, we have

Nb + Ng ≤ 2 + N2 + N3, Ng ≤ 2 + N2.

– After removing all vertices of V̌W , we have c(G̃) = Nb + 2Ng.

Thus we have also

(4) c(G̃) ≤ 4 + 2N2 + N3.

Applying these properties (1–4) and the BCP condition to (3.12) and (3.13),

|Va(C)| ≤ C · 1

n4+ 3N3+2N2+2N1
2

· n
2N3+N1

2 · n
4+2N2+N3

2 ≤ Cn−2

as claimed. Thus, for a different constant C > 0,

|V1111(C) − 4V1112(C) + 6V1123(C) − 3V1234(C)| ≤ Cn−2. (3.14)
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Applying (3.10), (3.11) and (3.14) to (3.9) proves the lemma. ■

Proof of Theorem 2.16. Applying Lemma 3.5 and Markov’s inequality, for any ε > 0,

P
(∣∣∣∣ 1nvalG(L) − 1

n
EvalG(L)

∣∣∣∣ > ε

)
≤ C

ε4n2 .

This bound is summable in n, so by the Borel-Cantelli Lemma, almost surely

lim
n→∞

1
n

valG(L) − E
[ 1

n
valG(L)

]
= 0.

The same statement holds for L′, and combining this with Lemma 3.1 gives Theorem 2.16. ■



CHAPTER 3

Analyzing Markov Chain Dynamics Using Noise Injected
Querying, Closing the Local-Computational Gap In Sparse

Tensor PCA

Disclamer: This project is ongoing joint work with Conor Sheehan, Kostas Tsirkas, and
Ilias Zadik. New results on this project are still in development, but the main arguments on
absence of a local-computational gap are reasonably finished. Similar to Chapter 2, we will
reference the (in progress) paper [50].

Notation. The notation An = Ω̃(Bn) is used for statements that hold when An ≥
C logs(n)Bn for some sufficiently large C > 0 and s ∈ N. The standard asymptotic notations
O, o, Ω, ω are used with respect to n. The notation Cn = Poly(n) refers to any function satisfying
ns ≤ Cn ≤ ns+1 for some s ∈ N. The symbols dH and d1 denote the Hamming distance
and the ℓ1 distance, respectively. Finally, we often refer to the angle between two vectors as
cos(σ, θ) = ⟨σ,θ⟩

∥σ∥2∥θ∥2
for two vectors σ, θ ∈ Rn.

1. Computational-Local Gaps And Markov Chains

In contrast to Chapter 1, this chapter establishes a class of iterative algorithms on Gaussian
additive models (GAMs) which (a) have a tractable analysis in the sense that we can explicitly
write the law of many macroscopic properties of our iterates and (b) is expressive enough
to achieve the algorithmic thresholds predicted by low-degree methods or other type of
computational frameworks. As an application, we prove positive results for a restricted class of
GAMs known as sparse tensor PCA, which was briefly introduced in Chapter 1.
These results provide a refutation of the indictment of Markov chain Monte Carlo (MCMC)
with respect to local-to-computational gaps. In fact, a similar story has played out in literature
on the planted clique problem.

1.1. Planted Clique And The Resurrection Of MCMC. Given a signal θ ∈ {0, 1}n

with k ones, consider a random matrix A ∈ Rn×n with entry-wise distribution,

Ai,j =
{

1 if (i, j) has θi = θj = 1
Bernoulli(1/2) otherwise

.

The goal of recovering θ given A is known as the planted clique problem. This model has, perhaps,
the most famous computational-to-statistical gap; simple arguments are able to prove that when
k = 0, the largest clique (i.e. any vector x ∈ {0, 1}n where x⊤Ax

∥x∥2
0

= 1) grows at a rate of 2 log2(n).
It is then intuitive that maximum likelihood estimation will recover cliques of size (2 + ε) log2(n),
albeit solved by brute force search, yet—embarrassingly—no known polynomial time algorithm
has been demonstrated recovery of cliques o(

√
n). Evidence for this representing this threshold

being “hard” has been proved from both the sum of squares perspective [7] and from the overlap
gap perspective [31]. This threshold was also confirmed from the Markov chain perspective [42]
where the metropolis process fails to find cliques of size

√
n or smaller.

It was then of relative surprise that [17] proved that any Markov chain process with stationary
distribution e−β|C|, where C is any clique and β > 0, could not find cliques up to k = o(n)
in size. And thus, the entire class of Markov chain algorithms came into question. Are they

37



1. COMPUTATIONAL-LOCAL GAPS AND MARKOV CHAINS 38

strictly worse than other classes of polynomial-time algorithms? Is there any way to correct these
failures?

Yes, there is. Consider a greedy algorithm on the Hamiltonian H(v) = −|E(v)|+γ(
(|v|

2
)
−|E(σ)|)

where v is a subset of the vertex set [n] and E(v) is the number of edges connecting two vertices
in v. In lieu of the hard constraints (i.e. restricting to the domain of H to only cliques or to
v with |v| = k), [35] introduced the regularization term seen above with parameter γ > 0 and
relaxed the domain of H to all v ⊂ [n]. For a specific γ > 0, it was proven that such an algorithm
initialized at 1 (and therefore a randomized low-temperature Markov chain version) will output
the planted clique θ when k ≥ C

√
n for some constant C. This result was able to resurrect

Markov chain methods through two major ideas: (1) considering soft constraints to encourage
sparsity, and (2) warm initializations can be vital for MCMC to reach the performance of
other polynomial time algorithms. Indeed, these tools will be vital to s similar story surrounding
the sparse tensor PCA model.

1.2. Sparse Tensor PCA (Again). We return to the sparse tensor PCA model introduced
in Chapter 1, giving a brief refresher now. Given vector θ ∈ Rn, say with ∥θ∥0 = k, we receive
the observation,

Y = λ

kr/2 θ⊗r + G,

where G ∈ Rn⊗r is a tensor with i.i.d standard normal entries. The goal is to recover θ from
Y with high probability. As mentioned previously, this algorithm demonstrates a local-to-
computational gap, suggesting that efficient algorithms for this problem must be “global” in
nature [3, 4, 18].

The Binary Case

λSTATS = Θ(
√

k)
λALG = Θ(kr/2 ∧ n(r−1)/2

kr/2−1 )
λMCMC = Θ(kr−1/2 ∧ nr−1

kr−3/2 )

λ

Impossible Hard Easy Locally Easy

The Ternary Case

λSTATS = Θ(
√

k) λALG = Θ(nr/4) λLOCAL = Θ(nr−1/2)

λ

Impossible Hard Easy Locally Easy

Figure 1. Differing computational thresholds for sparse tensor PCA.
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We review these gaps in the binary case of θ ∈ {0, 1}n and the ternary case of θ ∈ {−1, 0, 1}n

with ∥θ∥0 = k ∈ [n]. Thresholds for the binary case [17] (i.e. when θ ∈ {0, 1}n) and the ternary
case [3] (i.e. when θ ∈ {−1, 0, 1}n) are provided in Figure 1.
The λMCMC threshold from [17] was proven for a set of Markov chains with a hard sparsity
constraint, wherein they restrict the state space to ∥σ∥0 = k. Meaning that ideas from [35]
could be used to improve the performance of Markov chains. We prove this is the case,
demonstrating that state space relaxations, soft constraints and a warm initialization allows
MCMC algorithms to achieve the threshold

√
log(n)λALG for both the binary and ternary case

of θ.
The analysis of these algorithms is also of independent interest. We consider a set of noise
injected querying methods which have a simple Gaussian law. This leads to the ability to track
macroscopic properties of Markov chain algorithms, drastically simplifying the analysis. An
interesting future direction would be to prove this class of algorithms can provide negative results
on Gaussian additive models and perhaps can be linked to low-degree polynomial estimation in
a manner similar to AMP methods from [60].

2. Main Contributions

This section will briefly describe the sparse tensor PCA problem and our main contributions
to the binary signal case. We present the framework that drives this analysis in Section 3 and
provide a proof of Theorem 2.4 in Section 4. We leave the results for the ternary case to [50].

Definition 2.1. Given n ∈ N, α ∈ (0, 1), r ∈ N, k = Θ(nα) ∈ N and λ (scaling with respect to
n and k). Let θ ∈ {0, 1}n be such that ∥θ∥0 = k (without loss of generality, we assume that
θ = [k]). We generate the tensor Y ∈ Rn⊗r as

Y = λ

kr/2 θ⊗r + G, (2.1)

where G is the standard N (0, 1) Gaussian tensor with i.i.d. entries.

Definition 2.2. Define algorithm MC : Rn⊗r × {0, 1}n → {0, 1}n given Y ∈ Rn⊗r and initial-
ization σ1 ∈ {0, 1}n as follows:

Set ξ = 25 log(n) and γ = 2(ξ∗ log(ξ∗n))1/2, let P ⊂ [n]N be a sequence of i.i.d. uniform samples
of [n], and initialize auxiliary variables t = 0 and ti = 0 for all i ∈ [n]. For each i ∈ [n], generate
ξ independent mean zero Gaussian random variables Gj

i , for j ∈ [ξ], further set Ḡi = 1
ξ

∑ξ
j=1 Gj

i .
Algorithm, MC then runs the following iterative loop,

(1) Increment t by one. When Pt = i, also increment ti by one.
(2) Calculate,

Dt = (1 − 2σt
i)
(
⟨ei ⊗ (σt)⊗(r−1), Y ⟩ − γ∥σt∥r−1

0 + (Gti
i − Ḡi)∥σt∥(r−1)/2

0

)
. (2.2)

If Dt > 0 then accept the transition of setting σt+1
i = 1 − σt

i and keep all other
coordinates the same value.

(3) Return σt+1 the first time that t > ξn/2.

Remark 2.3. It can be shown that MC is a Markov chain algorithm in the variables σ, {ti : i ∈
[n]}. Meaning the following theorem dispels the idea that MCMC is strictly worse than other
algorithmic classes for the model from Definition 2.1.

Theorem 2.4. Given σ1, consider MC(Y, σ1) where Y ∈ Rn⊗r is generated as in Definition 2.1.
The following holds with probability 1 − o(1).

(1) When σ1 = 1, then MC(Y, 1) outputs θ at the end of run-time for some λ = Ω̃(n(r−1)/2/kr/2−1).
(2) When σ1 = ei, for some i where θi = 1, then MC(Y, ei) outputs θ at the end of run-time

for some λ = Ω̃(kr/2).
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As mentioned at the beginning of this section, Theorem 2.4 is proven in Section 4.

3. Noise Injected Querying

Definition 3.1. Let n be a generating parameter for the following algorithm. Consider a
sequence of observation {Yi}i∈[N ] where N = Poly(n) and each Yi = µ∗

i + Zi with µ∗ ∈ RN and1

Zi
iid∼ N (0, 1) for i ∈ [N ]. Given a sequence of sets ∆ ⊂ [N ]N, ξ ∈ N, and a sequence of functions

F = {ft}t∈N where ft : R|∆t| → R. We sample ξ · N independent mean zero Gaussian random
variables Gj

i for i ∈ [N ] and j ∈ [ξ], further setting Ḡi = 1
ξ

∑ξ
j=1 Gj

i and initializing auxiliary
variables b = (bi)i∈[N ] = 0 for all i ∈ [N ]. Then—for each iterative step t—we consider the
querying set ∆t and for all i ∈ ∆t we increment bi by one. We then return the value of

ft(Y∆t , b∆t) = f(Y∆t + (Gb∆t
∆t

− Ḡ∆t)).

We iterate this process in t until there exists an i ∈ [N ] where bi > ξ. This final run-time
is denoted Tξ. We refer to this algorithm as Noise Injected Querying, abbreviated as
N IQ(Y, F , ∆, ξ).

This general set of algorithms was inspired by the noise injection methods from [2]. Their results
involve a spectral method on an order three Gaussian tensor plus a rank one spike. In each step
of their tensor power method, they consider a query ∆t = [N ] = [n3] and run their algorithm for
ξ = log(log(n)) iterations. We extend this technique to a more general version of noising that
can be run for much longer times by limiting the access to the amount of Gaussian observations
at each time step.

3.1. N IQ Has An Independent Gaussian Law. Although this technique of noising
seems rather simple, it represents a general algorithmic principle: The algorithm N IQ can
represent a proxy for the algorithm ft(Y∆t) for t ∈ [Tξ] while having a simple technical analysis.
Indeed, the following theorem dictates a simple law for the returned values of ft(Y∆t + (Gb∆t

∆t
−

Ḡ∆t)).

Theorem 3.2 (Noise Injected Querying Has An Independent Gaussian Law). Consider the
algorithm N IQ(Y, F , ∆, ξ) given in Definition 3.1 where each ft ∈ F is Borel measurerable with
respect to the set of random varaibles Y∆t, G

b∆t
∆t

and Ḡ∆t. Then, the following equivalence in
law holds:

(ft(Y∆t + (Gb∆t
∆t

− Ḡ∆t))t∈[Tξ])
L= ft(X∆t)t∈[Tξ],

where X∆t

iid∼ N (µ∗
∆t

, ξI|∆t|) for each t ∈ [Tξ].

This theorem prescribes that each returned value of ft(Y∆t + (Gb∆t
∆t

− Ḡ∆t)) is equivalent to
viewing ft(µ∗

∆t
+ noise) where the noise is Gaussian, independent across the indexes of the

observations in Y and independent across the run-time of the algorithm. This leads to a far
easier technical analysis of N IQ algorithms at the cost of inflating the noise by a ξ factor.
Many times we consider ξ to be poly-logarithmic in n, for such a case we only need a modest
poly-logarithmic increase in the signal-to-noise ratio λ.

The Proof of Theorem 3.2. This proof follows from calculating the mean and covariance
of At = Y∆t + (Gb∆t

∆t
− Ḡ∆t) between each coordinate of At and At′ for two times t, t′ ∈ [Tξ].

Clearly {At}t∈[Tξ] is a set of Gaussian random variables so this characterization of the mean and
covariance exactly determines the law of At for t ∈ [Tξ]. The extension of this statement to all
borel measurable functions ft is immediate by considering the push forward measure under ft.

1Notice that we could also consider Z ∼ N (0, Σ) for known covariance Σ ∈ RN×N by considering Σ−1/2Y

and Σ−1/2µ∗.
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First, we check the mean. This follows from the fact that Y∆t = µ∗
∆t

+Z∆t where Z∆t

iid∼ N (0, I|∆t|)
and the fact that both G

b∆t
∆t

and Ḡ∆t are centered Russians. Thus, we have the trivial calculation
that E[Xt] = µ∗

∆t
—the desired mean.

Second, we check the covariance. We calculate this value on the centered random variable
Ãt = Z∆t − G

b∆t
∆t

+ Ḡ∆t as it has the same covariance structure as At. As Ãt is centered, we
need just calculate the product of each Ãt,i and Ãt′,i′ . To do this, we require that for t, t′ ∈ [Tξ],
i ∈ ∆t and i′ ∈ ∆t′ . Moreover, we let jt = b∆t and jt′ = b∆t′ . Calculate,

E[Ãt,iÃt′,i′ ] = E[(Zt,i + Gjt
i − Ḡi)(Zt′,i′ + G

jt′
i′ − Ḡi′)]

= E[Zt,iZt′,i′ ] + E[Gjt
i G

jt′
i′ ] − E[Gjt

i Ḡi′ ] − E[ḠiG
jt′
i′ ] + E[ḠiḠi′ ]. (3.1)

We calculate the above summation term by term.

(1) E[Zt,iZt′,i′ ]: This term is zero if i ̸= i′ and one if i = i′ by the assumption on Zt in
Definition 3.1.

(2) E[Gjt
i G

jt′
i′ ]: This is ξ if t = t′ and i = i′ and zero otherwise as we assume each Gj

i are
independent Guassians for each i ∈ [N ] and j ∈ [ξ].

(3) E[Gjt
i Ḡi′ ]: By the definition of Ḡi from Definition 3.1, E[Gjt

i
1
ξ

∑ξ
j=1 Gj

i′ ] = 1
ξE[Gjt

i Gjt

i′ ],
where the last equality is because Gjt

i and Gjt

i′ are independent if j ̸= jt. It then follows
that E[Gjt

i Ḡi′ ] is one if and only if i = i′.
(4) E[ḠiG

jt′
i′ ]: By symmetry, this term is also one if and only if i = i′.

(5) E[ḠiḠi′ ]: We have that E[ḠiḠi′ ] = 1
ξ2
∑ξ

j=1
∑ξ

j′=1 E[Gj
i Gj′

i′ ]. This is equal to 1
ξ

∑ξ
j=1 ξ =

1 if i = i′ and zero otherwise.

Plugging each term into (3.1) gives,

E[Xt,iXt′,i′ ] = 1{i = i′} + ξ · 1{t = t′, i = i′} − 2 · 1{i = i′} + 1{i = i′} = ξ · 1{t = t′, i = i′}.

This is the desired covariance. ■

We will see in the subsequent sections that each algorithm defined in Section 2 is a special case
of N IQ with polynomial number of Gaussian observations depending on the value of r given in
Definition 2.1.

4. Application: Binary Signal Sparse PCA.

We first prove our results on a general value of ξ and then later specify the value ξ∗ which
guarantees complete recovery of θ for algorithm MC.

Lemma 4.1. Given a general ξ ∈ N, the algorithm MC and its generated sequence (Dt)t∈[Tξ]
from (2.2) has the following equivalence in law,

(Dt)t∈[Tξ]
L=
(

(1 − 2σt
i)
(

θi
λ

kr/2 ⟨σt, θ⟩r−1 − γ∥σt∥(r−1)/2
0 + ∥σ∥(r−1)/2

0 Zt

))
t∈[Tξ]

,

where Zt
iid∼ N (0, ξ) for each t ∈ [Tξ].

Proof. The proof of this theorem follows from demonstrating a choice of function sequence
F and querying sequence ∆, such that MC is equivalent to N IQ(Y, F , ∆, ξ) algorithm for Y
from (2.1) and each ξ ∈ N.
Algorithm MC (from Definition 2.2) will propose a single index i ∈ [n] in which Dt is calculated
from. To include this type of sampling in the querying sequence ∆, we set Si = {(i, j1, . . . , jr−1) :
j1, . . . , jr−1 ∈ [n]} and then define ∆ as a sequence of uniformly random draws from the set
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{Si}i∈[n]. Under this querying, each function ft ∈ F will have ft : Rnr−1 → R. The function
corresponding to Dt is then,

ft(YSi) = (1 − 2σt
i)

 ∑
j1,...,jr−1∈[n]

Yi,j1,...,jr−1σt
j1 · · · σt

jr−1 − γ∥σt∥(r−1)/2
0

 .

By Theorem 3.2, we have that

ft(YSi + G
bSi
Si

− ḠSi)
L= ft(XSi)

where XSi

iid∼ N ( λ
kr/2 θiΘr−1, ξId) with Θr−1,j1,...,jr−1 = θj1 . . . θjr−1 . Expanding out ft(XSi), let

X̄Si be the centered random variable of XSi , we have,

ft(XSi)
L= (1 − 2σt

i)

 ∑
j1,...,jr−1∈[n]

Xi,j1,...,jr−1σt
j1 · · · σt

jr−1 − γ∥σt∥(r−1)/2
0


L= (1 − 2σt

i)

 ∑
j1,...,jr−1∈[n]

(
λ

kr/2 θiθj1 · · · θjr−1 + X̄i,j1,...,jr−1

)
σt

j1 · · · σt
jr−1 − γ∥σt∥(r−1)/2

0


L= (1 − 2σt

i)
(

λ

kr/2 θi⟨θ, σ⟩r−1 + ∥σ∥(r−1)/2
0 Zt − γ∥σt∥(r−1)/2

0

)
,

where Zt
iid∼ N (0, ξ). Thus, we complete the proof.

■

Using Lemma 4.1, we then have the following guarentee on algorithm MC from Definition 2.2.

Lemma 4.2. Given an arbitrary ξ ∈ N, recall Tξ from Definition 3.1. The following then holds
with probability 1 − o(1):

Let C∗ = (3ξ log(ξn))1/2, if σ1 ∈ {0, 1}n satisfies cos(σ1, θ)r−1 >
√

k
λ (C∗ + γ) and γ > C∗, then

Sign(Dt) = Sign(dH(σt, θ) − dH(σt+1, θ)) for all t ∈ [Tξ]. In words, we always accept (or reject)
transition that decrease (or increase) the Hamming distance.

Proof. Consider the equivalence in law from Lemma 4.1, with probability 1 −o(1), by Mills’
upper bound on the right tail over the ξ · n mean zero variance ξ Gaussian variables prescribed
by Lemma 4.1, we have that maxt |Zt| ≤ (3ξ log(ξn))1/2 = C∗. Conditioning on this bound, we
now prove inductively that if cos(σt, θ) ≥ cos(σ1, θ) then Dt > 0 if and only if the proposed
transition decreases the Hamming distance and thus cos increases monotonically. The base case
of t = 1 holds as the cosine holds by the assumption of the Lemma and there is no proposed
transition leading to σ1, making the statement vacuous.
Therefore, assume that σt satisfies the inductive hypothesis, as a consequence we have that
cos(σt, θ) ≥ cos(σ1, θ), we now consider each possible transition for our algorithm,

(a) θi = 1 and σt
i = 0:

Dt ≥ λ

kr/2 ⟨σt, θ⟩r−1 − C∗∥σ∥(r−1)/2
0 − γ∥σt∥(r−1)/2

0 .

This transition is always accepted as cos(σt, θ)r−1 ≥ cos(σ, θ)r−1 >
√

k
λ (C∗ + γ).

(b) θi = 1 and σt
i = 0:

Dt ≤ − λ

kr/2 ⟨σt, θ⟩r−1 + C∗∥σ∥(r−1)/2
0 − γ∥σt∥(r−1)/2

0 .

With the same condition as (a), this transition is always rejected.
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(c) θi = 0 and σt
i = 1:

Dt ≥ γ∥σ∥(r−1)/2
0 − C∗∥σ∥(r−1)/2

0 .

This transition is always accepted as γ > C∗.
(d) θi = 0 and σt

i = 0:

Dt ≤ −γ∥σ∥(r−1)/2
0 + C∗∥σ∥(r−1)/2

0 .

With the same condition as (c), this transition is always rejected.

Thus, with the stated conditions on ⟨σt, θ⟩ and γ, the statement on Dt holds for time t and
trivially the inequality on the cosine holds as well as we must have reduced the Hamming
distance to the true solution, increasing the cosine of the angle. Thus, the statement is proven
by induction up to time Tξ, the maximal run time for which we can invoke Lemma 4.1. ■

The above lemma prove monotonic growth of cos(σt, θ) when one can initialize in the set of
cos(σ1, θ) large enough. It is then immediate that—for a good initialization–MC will output θ
at the end of run-time if every coordinate i ∈ [n] has been proposed at least once. The
following lemma proves that the proposal sequence P from Definition 2.2 satisfies this condition
with high probability. This result, combined with Lemma 4.2, gives a proof for Theorem 2.4 so
long as we can show the initializations detailed in this theorem satisfy the conditions of Lemma
4.2.
Lemma 4.3. Let P = (pt)t∈N be a random sequence which sample each coordinate uniformly
from the set [n]. Let T be the first time that each element of [n] is in P = (p1, . . . , pT ) and let Ti

be the random variable Ti =
∑ξ·n/2

j=1 1{pj = i}. With ξ = ξ∗ = C log(n) for any constant C ≥ 25,
the following event holds with probability 1 − o(1):

{∆ : T ≤ ξ∗n/2 ∪ Ti ≤ ξ∗ for all i ∈ [n]}. (4.1)

Before proving this result we provide a simple interpretation of the above. The uniformly
random proposal sequence will output each coordinate at least once before the end of run-time
ξ∗n/2 with probability 1 − o(1). Moreover, we have that Tξ, the run-time for which we can
invoke Lemma 4.1, must be larger than ξ∗n/2 with probability 1 − o(1), meaning that we can
interchange a statement with t ∈ [Tξ] with t ∈ [ξ∗n/2].

Proof. We prove that P(Ac) = o(1) by showing both conditions in (4.1) have complements
with probability o(1) for the desired ξ∗. A union bound then gives the statement.
First, using a classic bound on the coupon collector problem from [77] (a sharper version of this
bound is from Theorem 5.13 from [57]), we have that

P(T > ξ∗n/2) = P(T > Cn log(n)/2) ≤ n−C/2+1.

Second, using that Ti ∼ Binomial(ξ∗n/2, 1
n) and a Chernoff bound (see Section 4.1 of [62]), we

have that
P(∪i∈[n]Ti > ξ∗) ≤ nP(Ti > .75ξ∗) ≤ ne(.5)2ξ∗/6 = neξ∗/24 = n−C/24+1.

Choosing any C ≥ 25 gives the proof. ■

All of these results have now reduced the proof of Theorem 2.4 to demonstrating that the
initialization 1 and ei satisfy condition (4.2), which we recall as,

cos(σ1, θ)r−1 >

√
k

λ
(C∗ + γ) (4.2)

for some C∗ from Lemma 4.2 for their stated values of λ. For simplicity, as ξ∗ = 25 log(n), we
assume that γ = Θ(C∗) = Θ(log(n)) (but still γ > C∗). Then, condition (4.2) is equivalent to

λ ≥ C log(n)
√

k

cos(σ1, θ)r−1 , (4.3)
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for some C > 0. If we consider σ1 = 1, then condition (4.3) is satisfied when,

λ ≥ C log(n)
√

k√
k/n

r−1 = C log(n)n(r−1)/2

kr/2−1 . (4.4)

Moreover, considering σ1 = ei, then condition (4.3) is satisfied when,

λ ≥ C log(n)
√

k√
1/k

r−1 = C log(n)kr/2. (4.5)

Inspecting equations (4.4) and (4.5), we see that running both MC(Y, 1) and MC(Y, ei), for
our specified choice of ξ∗ recovers the true solution for at least one of the two runs when
λ ≥ C log(n) min

(
n(r−1)/2

kr/2−1 , kr/2
)
, this is the famed Algorithm Threshold (up to a log factor) for

the sparse tensor PCA problem from [18], which they previously claimed was likely impossible
for Markov chains (or any other local algorithm) to succeed at.
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