
ON THE USE OF STOCHASTIC LOCALIZATION FOR SAMPLING.

Goal: The message delivered in this lecture will be twofold. For the first part of this tutorial, we will
assume the existence of any oracle of desire when it comes to calculating (possibly) hard observable such
as transition kernels and conditional expectations. This is done to illustrate the noising technique from
stochastic localization which is used to derive sampling algorithms of varying hardness. Hopefully, we will
also make connections between simulated annealing and diffusion processes.
The second part of this tutorial will be to show how to provide rigorous sampling error bounds when one
must have a sufficiently fine discretization scheme and a high quality approximation of the oracle of desire.
An application to Z2-synchronization will be discussed.
So Let’s get started.
Q: What is the overall goal of sampling?
A: Given some distribution µ, perhaps specified from some random data Y, our goal is sample an atom
x∗ ∼ µ in some computationally efficient way. Usually, computational efficiency comes from relates to one’s
ability to compute value such as µ(x1)/µ(x2) or ∇ log µ(x) for points x1, x2 ∈ supp(µ).

1. General Stochastic Localization Sampling [Mon23]

In contrast to the observable from MCMC and diffusion processes, we will take a different approach to
sampling that is based on estimating transition kernels. We aim to create a general scheme to be able to
sample an arbitrary distribution, µ, supported in Rn.
Mimicking the notion of “noising” and “denoising” from stochastic localization, and the previous talks given
over the past few weeks, the following plan seems realistic:
First we will write a noising algorithm in “forward” time,

(1) Draw an Element x ∼ µ (Somewhat confusing since one would need a sampling algorithm already,
but we address this later)

(2) Given interval I = [0, T ], “noise” the sample x continuously (or in discrete intervals of continuous
time) in such a way that after a reasonably long runtime t, the law of the noised element is some
tractable distribution, say ν. Stated formally, consider an observation (i.e. noising) sequence (Yt)t∈I

where for each k ∈ N and t1 < · · · < tk ∈ I, we have that x −→ Yt1 −→ · · · −→ Ytk
forms a Markov

Chain.

Remark 1.1. Note, as we will see later, the noising process is allowed to expand beyond the support of µ,
contrasting MCMC methods.

We can now implement our stocastic localization algorithm in the backwards direction (“denoising”),

(1) Sample from YT ∼ ν, the tractable fully noised distribution. Often times this is simply an i.i.d
random vector.

(2) Iteratively sample from the reverse posterior distribution, i.e.
Pt−ϵ,t(·) = P(Yt−ϵ ∈ ·|Yt),

where this distribution is derived by the noising procedure given above.

Under this definition, one has essentially abstracted away alot of the difficulty of implementing this algorithm
(i.e. the need to discretize reverse time and inaccuracies in estimating the transition kernel Pt,t′ for specific
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values of t, t′ ∈ I). Regardless, this idea should hopefully give us a valid sampling algorithm under the final
assumption that, given the continuous path of all noised elements (Yt)t∈I , we have

P(x ∈ A|(Yt)t∈I) ∈ {0, 1}.

So why does this even work?
From previous talks, if we have a sequence of random measures µ0, . . . , µT (with T possibly being infinite
and this sequence of measures varying continuously) where µ0 = µ (the target measure), µT = 11x∗∈A and
E[µt|µs] = µs (for all s < t, i.e. a martingale) for s ≤ t, then we have that E[µT ] = µ0 = µ, as µT is a Dirac
measure then the final step of our stochastic localization process is a sample from µ, which is trivial.
To construct this sequence of measure we consider a Markov chain,

x∗ −→ Y1 −→ Y2 −→ · · · −→ YT ,

where x∗ ∼ µ. We can then define the Doob martingale of µt = P(x∗ ∈ ·|Yt, . . . , YT ) = P(x∗ ∈ ·|Yt). As the
noising process is localized once the whole sequence of Y’s are revealed, we have that µT = 11x∗∈A and if the
noising process forces YT to be independent of x∗, then µT = P(x∗ ∈ ·|YT ) = P(x∗ ∈ ·) = µ. We further
have, by definition, that µ0 = µ as it is a forced localization.
So, in a sense, this setup gets the localization process backwards, so we follow the denoting process, as the for-
ward process is Markovian, this is also a Markov chain, thus we need to just estimate P(x∗ ∈ ·|Yt, . . . , YT ) =
P(Yt−1 ∈ ·|Yt) and simply daisy chain these transition kernels together.
Now lets get a taste of how to derive SL algorithms using the noising-denoising process. We will present three
different model / noising algorithms, to give some basic commentary on how our noising process constructs
our SL algorithm. Our three examples, defined by how they noise x∗, are:

– The Eraser Noiser
– A “Simulated Annealing-lite” Binary Switch Noiser
– The Isotropic Gaussian Noiser
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Figure 1. The Eraser Noiser

1.1. The Eraser Noiser. The erasure noiser, noises a sample
x ∼ µ, with x ∈ Rn in the following manner:

First we generate n random variables {t1, . . . , tn} i.i.d∼ Unif([0, 1])
as displayed by the vertical lines in Figure 1. As time t moves
forward, when t > ti we erase the i-th element of x.
The related denoising process is very straightforward and is
equivalent to a sequential sampling procedure,

(1) First, one random generates an order for which the
elements of x we erased in, for simplicity lets choose
the most natural ordering, numerical.

(2) We then sample xj from the conditional law µ(xj |
xi for all i ∈ [j − 1]).

If we consider a distribution supported on the hyper-cube,
which is {−1, +1} valued, then we can see that the above
sample procedure in step two can be reduced to calculating the
conditional mean,

(1.1) E[xj | xi for all i ∈ [j − 1]].
Equation (1.1) represents on an overall trend we will see in
stochastic localization algorithms, a reduction from sampling
to estimation of a conditional expectation. This immediately

draws comparisons with Diffusion which reduces sampling to estimation of the score function. When we see
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the isotropic Gaussian noiser, an application of Tweedie’s formula will codify the relationship between these
two techniques.

Remark 1.2. Another interesting fact, although our noising process is continuous in time, there are simple
discretization of the denoising process which will never need to be further refine, essentially removing the
concern of time discretization.

1.2. The Binary Switch Noiser. Now we will consider the binary switch noiser, this presentation differs
from the localization algorithm in [Mon23] in that we fix the flipping Rademacher variable to have probability
1/2 instead of probability (1 + t)/2, this is just to ellicit a simpler reverse process.
The running informal description of the noising process is as follows:
(For this example we will noise backwards in time to maintain the notation of [Mon23])

(1) Draw x ∼ µ supported on {−1, 1}n.
(2) At t = 1 we set Z1 = 1, let Y1 = x ⊙ Z1.
(3) Focusing on one coordinate, for each time interval [t − δ, t), we flip a coin with weight δ/t + o(δ), if

the coin is heads we set Zt,i = Bern(1/2), now let Yt = x ⊙ Zt.

If we preform this over each δ small intervals then our vector Y0 is an element-wise Rademacher 1/2 random
variable. Meaning, our forward process for sampling from µ is as follows:
For each δ step, uniformly sample an order of the variables, to update and then flip the value of each
coordinate with probability P(Yt+δ = yflip|Yt = y) = pi(y, t)δ + o(δ), where

pi(y, t) = (1 − t)
2t

− yi
E[xi|Yt = y] + 1

2 .

This again reduces the problem of sampling to estimating the conditional expectation E[xi|Yt = y].

Remark 1.3. If we think about the reverse process here when t is very small, pi is dominated by the first
term, which just says that one should flip irrespective of the alignment of y with the conditional mean. Once
t approaches 1, then the second term dominates, and we see that the alignment of y with the conditional
mean determines the likelihood of the flip. This effectively raises the temperature of the walk as time moves
forward, akin to simulated annealing, but in a more abstract way.

[Mon23] istead considered the variable Zt,i to instead be a Rademacher variable with probability (2 − t)/2 of
resulting in {1}, this is a more natural choice, as it leads to the following equivalency in the noising process.
Let (Xs)s>0, with X0 = x ∼ µ, be a continuous random walk on the {−1, 1}n hypercube, in each interval
[s, s + δ) we flip coordinate i with probability 1/2, we then have the equivalence of Yt = Xlog(1/t) for t ∈ (0, 1].

1.3. The Isotropic Gaussian Noiser. The final example is the process most associated with stochastic
localization, the isotropic Gaussian noiser.
For simplicity, we will first describe the denoising process without reference to the noising process. Consider
an x∗ ∼ µ, we consider the Gaussian process,

(1.2) Yt = tx∗ + Wt

where Wt is Brownian motion. It can be easily shown that this process is Markovian due to Markov properties
of Brownian motion, moreover as t −→ ∞ we have that the measure must localize to a Dirac at x∗ (just
divide by t!). Of course this process is intractable to run because it relies on the unknown sample x∗, but
there is an alternate form of the stochastic equation (1.2) that is feasible to run if we have access to a specific
conditional expectation oracle.
We can equivalently write the change in Yt as follows:

(1.3) dYt = E[x | tx +
√

tG = y]dt + dWt.

As with previous techniques the relation between stochastic localization and diffusion is close-knit, for this
case our denoiser can be directly related to score estimation through Tweedie’s formula.
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Theorem 1.4 (Tweedie’s Formula). Suppose that x∗ ∼ µ, and we have z ∼ N (x∗, σ2), then E[x∗ | z] =
z + σ2∇z log f(z) where f = N (0, σ2) ∗ µ.

As Yt ∼ N (x∗, t), we have that,
E[x∗ | Yt] = Yt + t∇y log f(y)

where f = N (0, t) ∗ µ. So we could equivalently run the stochastic process,
dYt = (Yt + t∇y log f(y))dt + dWt.

So, what is the noising process related to this sampling algorithm, it is simply the reverse time SDE of (1.2)
initialized at a sample x∗ ∼ µ.

2. Rigourus Stochastic Localization Bounds And The Spiked Wigner Model[MW24]

Now we move onto the second part of this lecture, providing rigorous sampling bound under discretization
and oracle approximation.
Now we can move onto a rigorous analysis of sampling from a general distribution µ using the Isotropic
Gaussian SL algorithm.
Per the previous section, our goal is to run SDE (1.3) to sample from a measure µ, perhaps now under some
set of observations D. Unfortunately we now lack access to the oracle
(2.1) E[x | D, tθ +

√
tG = y],

and have to deal with discretization errors of approximating the continuous denoising process.
The below Theorem, from [MW24], provides a rigorous bound on the error between µ and sample drawn
from the SL algorithm in terms of Wasserstein distance. This said algorithm takes the following from:
Given an oracle approximation m̂ : Rn × R → Rn, which takes in the time in the denoising process and an
estimate for y, returning an estimate for the conditional expectation (2.1). Under a discretization with step
size ∆, we then run the following,

(1) Set ŷ = 0.
(2) Draw a random variable w ∼ N (0, Idn)
(3) Update ŷ = ŷ + ∆m̂(ŷ, ∆(numSteps)) +

√
∆w.

(4) Repeat steps 2 and 3 until some desired stopping time.

In order to bound the error between µ and the law of samples from the above algorithm, we require the
following conditions to hold.
For transparency, we paste the full set of assumptions below from [MW24], in this work they consider a
anisotropic extension to the Isotropic Gaussian SL algorithm where the run the SL algorithm using,

y(t) = tHθ + Wt

where H ∈ Rm×n andwt is Brownian motion in Rm. This still has a SDE reduction, with y0 = 0, to running:
dy(t) = m(y(t), t) + dWt,

where, with G ∼ N (0, Id), m(y(t), t) = E[Hθ|tHθ +
√

tG = y(t)].
There is then a final step of transferring the estimation of Hθ to just θ which requires another approximator
mθ, but our application is conducted with H = Id and thus m = mθ.
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Assumptions [MW24]

(probabilities below are with respect to the distribution of the stochastic localization process {y(t)}, at
fixed D):

(A1) (Posterior mean consistency) With probability at least 1 − η, it holds that

max
ℓ∈{0,...,L−1}

1√
N

∥m(y(ℓ∆), ℓ∆) − m̂(y(ℓ∆), ℓ∆)∥2 ≤ ϵ1.

Further, with the same probability, ∥mθ(y(T ), T ) − m̂θ(y(T ), T )∥2 ≤ ϵ1
√

n, where we recall
that T = L∆.

(A2) (Path regularity) With probability at least 1 − η, it holds that

max
ℓ∈{0,...,L−1}

sup
t∈[ℓ∆,(ℓ+1)∆]

1√
N

∥m(y(t), t) − m(y(ℓ∆), ℓ∆)∥2 ≤ C1
√

∆ + ϵ2.

(A3) (Lipschitz continuity) There exists a sequence {rℓ}0≤ℓ≤L ⊂ R+, such that letting B(ℓ) := {y ∈
RN : ∥y − y(ℓ∆)∥2 ≤ rℓ

√
N}, then the following holds with probability at least 1 − η:

max
ℓ∈{0,...,L−1}

sup
y1 ̸=y2

y1,y2∈B(ℓ)

[
1√
N

∥m̂(y1, ℓ∆) − m̂(y2, ℓ∆)∥2 − C2√
N

∥y1 − y2∥2

]
≤ ϵ3.

Further, we assume that rℓ > (C1
√

∆ + ϵ1 + ϵ2 + ϵ3)eC2ℓ∆/C2 for all ℓ ∈ {0, . . . , L}. We also
assume that with the same probability, ∥mθ(y1, T ) − mθ(y2, T )∥2/

√
n ≤ C2∥y1 − y2∥2/

√
N + ϵ3

for all y1, y2 ∈ B(L).

The dependence on constants C1, C2 will be tracked in the statement below.

Theorem 1 [MW24]

Theorem 2.1. Assume that ∥mθ(y, T )∥2 ≤ R
√

n for all y ∈ RN (this can always be achieved by
projection onto the ball Bn(0, R

√
n)) and that conditions (A1), (A2) and (A3) hold. Letting µalg

D =
Law(θalg) be the distribution of the samples generated by Algorithm 1, then we have:

W2,n(µD, µalg
D ) ≤ 2(C1

√
∆ + ϵ1 + ϵ2 + ϵ3) · eC2T + 1

n
µD

(
∥θ∥2

2 · 1∥θ∥2≥R
√

n

)1/2 + 10Rη

+W2,n (µD, Law(mθ(y(T ), T ))) .

If in addition H has full column rank, and
∫

(∥θ∥2
2/n)c0µD(dθ) ≤ R2c0 for some c0 > 1, then

W2,n(µD, µalg
D ) ≤ 2(C1

√
∆ + ϵ1 + ϵ2 + ϵ3) · eC2T + C(c0)Rη(c0−1)/c0 + 1√

T
Tr

(
(H⊤H)−1)1/2

,

where C(c0) is a positive constant that depends only on c0.

2.1. Applying Theorem 2.1 To The Spiked Wigner Model. First, a quick recap on what this model
represents. We have a prior πΘ which generates the iid vector θ

iid∼ πΘ, we are then given the following
observation,

(2.2) bX = β

n
θθ⊤ + W

where W is a GOE(n) random matrix.
This is a generalization of the Z2-synchronization model to a general prior distribution besides Rademacher.
A simple calculation gives that the posterior of θ is given by

µX(θ) ∝ exp
(

β

2 ⟨θ, Xθ⟩ − β2

4n
∥θ∥4

2

)
πΘ(θ)⊗n
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This model has been incredibly well studied since its introduction for the asymmetric case by Johnstone in
2001. Spiked Wigner is meant to be a toy model used to study the ability for algorithms that do PCA-like
computation.
Although the basis of this model is much older. Specifically if we consider the non-planted version of this
model, we can consider the Hamiltonian H(σ) = σ⊤Wσ, of the infamous Sherrington-Kirkpatrick model if
we restrict σ ∈ {+1, −1}n.
We can apply Theorem 2.1 to this model if we can find an oracle m, which can get arbitrary accuracy on the√

n order, arbitrarily close to a Lipschitz function, is computationally efficient, and we can consider a fine
enough discretization, then we get this statement

W2(µ, µSL) ≤ ϵ
√

n

for an arbitrary ϵ > 0.
Favorably, the choice of AMP as the approximating oracle, run for a sufficiently long but O(1) run time, will
satisfy these conditions under further conditions on the prior π. We won’t go into AMP too much, but, it is
important to mention that, the isotropic Gaussian SL oracle and approximate is intimately connected. To get
a similar stochastic localization argument for any measure one must consider the available computationally
efficient algorithms for a given model and then see which SL algorithms can be applicable. For example,
AMP has been shown to be suboptimal in the tensor version of (2.2) so a different algorithm must be used
and perhaps there is a more amenable choice of SL oracle to approximate.

Remark 2.2. A very subtle point is when this theorem is actually meaningful, this problem is very delicate as
the posterior does not concentrate on the true solution in the same manner as a planted clique model would.
Meaning that there is a fundamental gap in the Wasserstein distance between the posterior and an estimator
of the true signal. This leads to issues for sampling when considering sublinear sparse signals which have
all-or-nothing phenomena.

Further Reading

– [BBdBM24] for an analysis on the stages of diffusion where speciation, and memorization occur.
Could be relevant to understanding the time dynamics of stochastic localization, although the analysis
is non-rigorous.

– [AMS24] for an analysis of the noiseless case where the model is SK. This paper also gives a notion
of when SL will fail, related with a phenomenon known as the overlap gap phenomena.

– [MS24] for a nice introduction to the spiked Wigner model and gives analysis using infinite replica
symmetric breaking, which is vital to analyze [AMS24]. The rigorization of ∞-RSB was proven in
[Tal11].

– [FVRS21] for an introduction to an approximate message passing, which is a vital tool to confirm
the assumptions of the general theorem presented today.
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Proof of Theorem 2.1

We couple {wℓ}ℓ≤L and {B(t)}0≤t≤T by letting wℓ = B(ℓ∆) − B((ℓ − 1)∆). We also define

Aℓ = ∥yℓ − y(ℓ∆)∥2/
√

N for all ℓ ∈ {0} ∪ [L], and write tℓ := ℓ∆.

Let Ω be the intersection of the events listed in points (A1), (A2), and (A3). By taking a union bound,
we obtain that P(Ω) ≥ 1 − 5η. We will prove by induction that, on Ω, the following holds for all ℓ ≤ L:

(52) ŷℓ ∈ B(ℓ), and Aℓ ≤ C1
√

∆ + ϵ1 + ϵ2 + ϵ3

C2

(
eC2ℓ∆ − 1

)
.

By definition, we see that A0 = 0 and ŷ0 = y(0) = 0 ∈ B(0). Next, assume that the induction hypothesis
holds up to step ℓ − 1. On the event Ω:

Aℓ − Aℓ−1 ≤ 1√
N

∫ tℓ

tℓ−1

∥m̂(ŷℓ−1, tℓ−1) − m(y(t), t)∥2 dt

≤ ∆√
N

∥m̂(y(tℓ−1), tℓ−1) − m(y(tℓ−1), tℓ−1)∥2

+ sup
t∈[tℓ−1,tℓ]

∆√
N

∥m(y(t), t) − m(y(tℓ−1), tℓ−1)∥2

+ ∆√
N

∥m̂(y(tℓ−1), tℓ−1) − m̂(ŷℓ−1, tℓ−1)∥2

≤ ∆ ·
(

ϵ1 + C1
√

∆ + ϵ2 + C2Aℓ−1 + ϵ3

)
.

Substituting in the induction hypothesis, we obtain Aℓ ≤ C1
√

∆+ϵ1+ϵ2+ϵ3
C2

(
eC2ℓ∆ − 1

)
as desired. The

claim ŷℓ ∈ B(ℓ) follows from the stated condition on rℓ. This completes the induction proof for Ω.
Applying the bound given in Eq. (52) with ℓ = L and using the moment assumptions (A1) and (A3),
we have:

1√
n

∥mθ(y(T ), T ) − m̂θ(yL, L∆)∥2 ≤ 1√
n

∥mθ(y(T ), T ) − mθ(yL, L∆)∥2

+ 1√
n

∥m̂θ(y(T ), T ) − m̂θ(yL, L∆)∥2

≤ ϵ1 + C2AL + ϵ3

(53) ≤ ϵ1 + ϵ3 + (C1
√

∆ + ϵ1 + ϵ2 + ϵ3) · eC2T =: ∆0.

The above upper bound further implies that (denoting by PR the projection onto Bn(0, R
√

n)):

(54) W2,n(µD, µalg
D ) ≤ W2,n

(
Law(mθ(y(T ), T )), µalg

D

)
+ W2,n (Law(mθ(y(T ), T )), µD)

≤ 1√
n
E∥mθ(ŷL, L∆) − mθ(y(T ), T )∥1/2

2 + W2,n (µD, Law(mθ(y(T ), T )))

(55) ≤ 1√
n

(
E∥PR(m̂θ(ŷL, L∆)) − PR(mθ(y(T ), T ))∥2

2
)1/2 + 10Rη + W2,n (µD, Law(mθ(y(T ), T ))) .

This implies Eq. (13). Eq. (14) follows by using the moment assumption to bound the expectation on
the right-hand side and optimizing over R, and finally applying Lemma B.1.
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