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Supplement B. The Conditional First Moment Function When (1− q)k = ρ
This supplement derives a general first moment function derivation with (1−q)k = ρ ∈ (0,1).

We consider the derivation of a conditional first moment function from Section 5 with the
generalization of

(1− q)k = ρ ∈ (0,1).

As this is a heuristic derivation, less emphasis will be placed on providing exact error terms,
and we will often replace values such as M,p, q with there large n counterparts.

For large n, and therefore large k, it suffices to consider q = (1+ o(1)) log(1/ρ)/k, mean-
ing ν = log(1/ρ). In words, we assume that the probability of a given test being negative is ρ
and each individual participates ina group test with probability (approximately) log(1/ρ)/k.
In our previous analysis we assumed ρ= 1/2.

First, we generalize the large n estimate of M and p, the number of positive tests and
possible infected respectively. A modification of Lemma 6.1 reveals that

M = (1+ o(1))(1− ρ) log2

(
n

k

)
= (1+ o(1))C

(1− α)(1− ρ)

log(2)
k log(n).

Additionally, by conditioning on this value of M , a further modification of Lemma 6.2 gives

p= (1+ o(1))(p− k) = (1 + o(1))(p− k)(1− q)N−M

= (1+ o(1))n
1+(1+o(1))(α−1)Cρ log(1/ρ)

log(2) .

Second, we adjust the conditioning event A to account for a different choice of q =
log(1/ρ)/k. Recall that

A= {deg(i)≤ 2aqM : ∀i ∈ σ∗}.
By a union bound, P(Ac) ≤ kP(B > 2aqM), where B ∼ Binomial(M,2q) [13, Section
9.2.1 (ArXiv version)]. A classic Chernoff bound [6] implies that

P(Ac)≤ k exp(−MD(2aq||2q)).
Then, using [13, Lemma A.4] we have D(2aq||2q)≥ 2q(a log(a)− a+ 1), and thus

P(Ac)≤ k exp(−M2q(a log(a)− a+ 1)).

Using rough estimates k = nα, q = log(1/ρ)/k, M = C(1− ρ)(1− α)k log(n)/ log(2), we
have
(105)

P(A) = 1− o(1), when a≥ 1 satisfies
2C(1− ρ) log(1/ρ)

log(2)
(a log(a)− a+ 1)>

α

1− α
.

Next, we derive the general conditional first moment function, specifically conditioning on
event A with a valid choice of a from above. To do so, we adopt the notation from Section 5.
Recall the events E≤s(σ),Es(σ),Eb(σ), these represent a candidate set σ missing at most s
positive tests, exactly s tests, or any given test b. We similarly consider the random variable
Zσ
t,ℓ and null measure Q—now with the choice of (1− q)k = ρ.
After observing that Q(E0(σ∗)) = (1− ρ)M , the identical planting argument resulting in

(21) for measure Q gives

P(E) = (1− ρ)−MQ(E ∩E0(σ∗)).

For any k-set σ with |σ ∩ σ∗|= ℓ, recall αs =Q(E0(σ∗)∩Es(σ)) and βs =Q(A|E0(σ∗)∩
Es(σ)) from Section 5. The sequence of calculations (22)-(25) then produce

(106) E[Zt,ℓ|A] = (1 + o(1))

(
k

ℓ

)(
p− k

k− ℓ

)
(1− ρ)−M

t∑
s=0

αsβs.
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Note, αs =
(
M
s

)
Q((Eb(σ))

C ∩Eb(σ
∗))sQ(Eb(σ)∩Eb(σ

∗))M−s. The first factor is calcu-
lated with

(107) Q((Eb(σ))
C ∩Eb(σ

∗)) = (1− q)k(1− (1− q)k−ℓ) = ρ(1− ρ1−x),

where x = ℓ/k. The second factor uses Q(Eb(σ ∩ σ∗)) = 1− (1− q)ℓ = 1− ρx and takes
value,

Q(Eb(σ)∩Eb(σ
∗)) = (1− ρx) + ρx(1− ρ1−x)2

= 1− 2ρ+ ρ2−x.(108)

Equalities (107) and (108) then give,

αs =

(
M

s

)(
ρ(1− ρ1−x)

)s (
1− 2ρ+ ρ2−x

)M−s
.

Event A implies that each individual in σ∗ participates in at most 2aqM tests. Therefore,
those individuals in σ ∩ σ∗ must have degree |σ ∩ σ∗| ≤ ℓ · 2aqM . Clearly, under {E0(σ∗)∩
Es(σ)}, σ ∩ σ∗ covers at most M − s tests. Using [13, Section 9.2.2 (ArXiv version)] (as in
Section 5) with the differing assumption (1− q)k = ρ, we have

βs ≤ P(B′
s ≤ ℓ · 2aqM),

where B′
s ∼Binomial(M − s, r(x)) with r(ℓ/k) = r(x) = Q(Eb(σ∩σ∗))

Q(Eb(σ)∩Eb(σ∗)) =
1−ρx

1−2ρ+ρ2−x .
Continuing, notice that

Q((Eb(σ))
C ∩Eb(σ

∗)) +Q(Eb(σ)∩Eb(σ
∗)) = ρ(1− ρ1−x) + ρ(1/ρ− 2+ ρ1−x) = 1− ρ,

therefore we re-normalize the probabilities in αs by prefactor (1−ρ)−M (which, from (106),
we already have at our disposal). Thus, with two random variables B1 ∼ Binomial(M −
t, r(x)) and B2 ∼ Binomial(M,s(x)), with s(x) = ρ

1−ρ(1− ρ1−x), we argue identically to
(28)-(29), applying our estimates of αs and βs, to give

E[Zt,ℓ|A]≤ (1+o(1))

(
k

ℓ

)(
p−k

k−ℓ

)
exp

(
−(M−t)D

(
ℓ · 2aqM
M−t

∣∣∣∣∣∣∣∣r (x))−MD

(
t/M

∣∣∣∣∣∣∣∣s (x))) .

Now, the general conditional first moment function is constructed as the solution to

1 =

(
k

ℓ

)(
p− k

k− ℓ

)
exp

(
−(M − t)D

(
ℓ · 2aqM
M − t

∣∣∣∣∣∣∣∣r(ℓ/k))−MD (t/M ||s(ℓ/k))
)
,

of variable t with fixed ℓ (and thus x). Taking the logarithm of both sides and substituting
ℓ= xk,x ∈ [0,1], t= yM,y ∈ [0,1], then gives

0 = log

((
k

⌊xk⌋

)(
p− k

⌊(1− x)k⌋

))
−M(1− y)D

(
xk · 2aqM
M(1− y)

∣∣∣∣∣∣∣∣r(x))−MD(y||s(x)).

Recalling the value of q = log(1/ρ)/k and rearranging, our resulting general conditional first
moment function is
(109)

1

M
log

((
k

⌊xk⌋

)(
p− k

⌊(1− x)k⌋

))
= (1− y)D

(
2a log(1/ρ)

1− y
x

∣∣∣∣∣∣∣∣r(x))+D(y||s(x)).

Additionally, we can drop the first term on the right-hand side which come from the condi-
tioning event A to get a generalized vanilla first moment function (derived under ρ= 1/2 in
[26]) with

(110)
1

M
log

((
k

⌊xk⌋

)(
p− k

⌊(1− x)k⌋

))
=D(y||s(x)).
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For x= 0, we can easily invert equation (109), being,

1

M
log

(
p− k

k

)
=D(y||ρ).

Then, using the rough estimates of M,p and k, we can simplify the above left hand side to

k log

(
n

1−(1−α)
Cρ log(1/ρ)

log(2)

nα

)
C(1−α)(1−ρ)

log(2) k log(n)
=

log(2)(1− α)
(
1− Cρ log(1/ρ)

log(2)

)
C(1− α)(1− ρ)

=
log(2)−Cρ log(1/ρ)

C(1− ρ)
.

Which then gives the value of y(0) = y, up to 1+ o(1) multiplicative error, as the solution to

(111)
log(2)−Cρ log(1/ρ)

C(1− ρ)
=D(y||ρ).

A careful tracking of the errors using Lemma 6.1 and 6.2 would allow this first moment
function to be a lower bound on ϕ(ℓ) given the assumption (1 − q)k = ρ. We believe that
a proof of the upper bound on ϕ(0) using the Paley-Zygmund inequality and finding the
derivative of y(x) from (109) at x = 0 will suffice to prove b-OGP results similar to the
ρ= 1/2 case. Below we consider differing value of ρ and visualize the changes the the loss
landscape. Figure 9 plots (111) as a function of C and outputting y (note we plot 1− y to
represent the proportion of covered tests). Figure 10 plots (109) and (110) as a function of x
outputting y.
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FIG 10. Plots of equations (109) and (110) of y = t/M as a function of x = ℓ/k for (C,α) ∈
{1.1,1.2,1.3,1/ log(2)}×{0,0.05} using Mathematica (1/ log(2) was chosen as [13] found a low-degree lower
bound on C for ρ= 1/2) in the n→+∞ limit. Each plot varies ρ and chooses a as the minimal value for (105)
to hold. Solid lines are the conditional solution to (109) and dashed lines are the vanilla solutions to (110). Note,
when these lines intersect, the conditional solution no longer exists (additionally, note the upper left plot has
further issues of existence). Under the assumption that the conditional solution accurately describe the typical
minimum number of missing tests given overlap ℓ= xk with σ∗, we make two observations. For smaller values
of C ∈ {1.1,1.2}, there is a tradeoff in the monotonicity of the vanilla solution and the conditional solution.
With ρ small, the vanilla solution is non-monotonic, then as ρ increases, this vanilla solution regains mono-
tonicity but not before the presence of the conditional solution—which is non-monotonic. Second, for moderate
C ∈ {1.3,1/ log(2)} a slight reduction of ρ induces monotonicity in both the conditional and vanilla solutions.
This indicates that a smaller value of ρ, perhaps ρ= 1/e (i.e. ν = 1), can lead to possible gains for our MCMC
algorithm.


