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1 Results:

This paper analyzes the stochastic block model (SBM), specifically under two groups. It quantifies the
asymptotic per-vertex mutual information and asymptotic estimation metrics. To define this model, consider
a label vector X with the following properties:

1. each element of X = {X,;};c1.n, is = 1 (indicating they are in the positive or negative group)

2. It is a bisection, i.e. ), X; = 0 (We also can analyze the case where each index is drawn from
Bernoulli (1/2) as this will concentrate about such X).

Now lets consider an undirected graph of n nodes with labels 1 : n. We want to connect edges between these
node to represent a relationship between the nodes. We would like to do this in a way that represents if
the nodes belong to the same group. We give two distributions P and @ in which edge weights are drawn
between two nodes (say E; ; for the edge between nodes i and j) can be drawn from in the following way

po P XX =1
Yl XX =1

We then form a graph G with vertices 1 : n and edges E. Depending on our choice of P and @) we are able
to elicit some well known models. For example the famous spiked wigner model can be created from

rv(fE) -x(E

In our case we will study a different choice of P and @, that of
P = Bernoulli (p,) @ = Bernoulli (¢y,)

This elicits the stochastic block model.

As for the results, this paper makes a further assumption on the values of p, and ¢, as n — oco. With
Dn = %(pn + Qn) we require

npp (1 — pn) — o0 (A)
this is a difficult assumption to justify as there is a large mount of interest in a situation where edge generating
distribution is

DPn = qn = —

a
n n



This is due to this model having a average edge count of order 1. We can see that this choice of P and Q
barely does not comply with (A) as

_ a+b _ _
Pn=— = np, (1 —pn) = O(1)

Notice, however, that if we had n'~¢ on the denomentaor of p,, and ¢, we would have:

a+b
nl—e

Pn = - npn(lfpn)ﬁoo

Thus, if a and b are particularly large can still justify this approach as we can consider them as having an
arbitrarily slow growth rate. This means that we can handle bounded yet large average degree cases (like
above) with a vanishing error.

As we mentioned previously, the purpose of this paper was to show the limiting per-vertex mutual information
%I (X;G). This quantity is of its own interest and, perhaps even more useful, it intimately related with our
ability to estimate X from G. The authors are able to reduce the SBM model into a “single-letterization”.
This means that we can consider the per-index mutual information as a function of a much simpler scalar
model. The single-letter model used is the following Gaussian channel:

Yo = \ﬁXO + Zy
where we have X ~ Uniform ({—1}, {+1}) and Zy ~ Normal (0,1). We can then define

. dpy|x (YO (7) xO)
IM‘Em<dm%w»>

mmse (y) = E {(Xo — E[Xo[Yo (7)])2}

I can now introduce the first of two major results:

Theorem 1.1: For any A > 0, let v, = 7. (A) be the largest non-negative solution of the equation
7= A(1 = mmse (7)) (x1)
We name 7, (\) the effective signal to noise ratio. Further we define ¥ (v, \) by

A 92
VA =7+ 5+ 10
Let G and X be distributed according to the stocastic block model with n vertices and parameters p,, and
¢n. Define ,
An =1 (pn = qn)” / (4Pn (1 — Pn))

Then as n — oo, we assume that A\, — A and np, (1 — p,) — co. Then,

lim ST (2:G) = U (v (\), \)

n—o00 nN

It turns out that this result on the per-vertex mutual information can also be worked into a statement about
estimation metrics. The canonical metric here is the matrix minimum mean square error, for reasons we will
see in the proofs below. We define the matrix minimum mean square error as:

_
n(n—1)

1This paper indicates this scalar model by a 0 subscript

MMSE, (\) = E[llxx" - E[XX"|G]||3]




We also note that the MMSE € (0,1) and where MMSE = 0 means recovery of all of the labels for X up
to sign and MM SE = 1 means we are not better off then random guessing. Thus we can reformulate the
information theoretic Theorem 1.1 into a theorem about large sample statistical estimation:

Theorem 1.4 Under the assumptions of Theorem 1.1, for any A > 0, let v, = v, (A) be the largest non-
negative solution® of the equation
v =A(1—mmse (7)) (*1)

We have the following limit:
-
lim MMSE, (\) = 1— 22

n— oo 2

When A <1, we have v, =0 and lim MM SFE =1
When A > 1, we have v, > 0 and lim MMSFE =< 1

“Throughout this paper I may abbreviate 7, if the parameters it relies on are obvious

So we recover the phase transition we have in class
A=1lim A, =limn (pn — qn)°/ (4, (1 = 5,)) = 1

Unfortunately, the M MSFE is not the most intuitive way to think about this estimation problem. Clearly a
count of the correct versus incorrect labels (up to a sign change) is much more relvent to our problem. A
metric which captures this information quite well is the overlap, defined as

Overlap(A) =  sup B [| (X, )]

Where the supremum is taken over all estimators & where the value of each index of % is either plus of minus
1. Intuitively this measures (up to a sign change) what proportion the best estimator overlaps with the true
labels. This paper establish a similar phase transition as above where of A < 1 then in the large n limit we

have
Overlap(A) — 0

which mean no estimator can achieve recovery better than random guessing. When A > 1 we have in the
large n limit that?

Vx ()‘)2

0< 43

< Overlap())

Meaning that we have establish a similar bound for the overlap and can conclude the threshold for correlated
recovery agrees with the M M SE metric above. We can only achieve correlated recovery when:

Lmn (pn — ¢0)° / (4pn (1 — Pn)) > 1

2 Proofs

Below we have a flow chart which show the order of logic between different sections of this paper. The
direction of the arrows show which Lemmas/Theorems are used to prove certain results in our papers.

2] am going to state these without proof since the real meat of the paper is the above two theorem.
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Figure 1: The order of logic in proving Theorems 1.1 and 1.4

2.1 (Fixed Point Eq.)

Here I will give a brief introduction to AMP theory and give some intuition on where the fixed point equation
comes from.

First we embed our guassian channel into a more extensive model. We consider alongside our output Yy a
secondary output X (e) which is the output from a binary erasure channel. Meaning we reveal the true label
X, with probability 1 — & (erasing it with probability €). This gives model

Xo(g) = BoXo (Bo ~ Bernoulli (g))
Yo = VX0 + Zo

The AMP algorithm for the vectorization of this more general scalar problem is of the form

xt+1 = %ft (l‘t,X (5)) - btft—l (xtilaX (5))

1< .
by = - Zf; (2}, X (2),)
i=1
Where f; is a sequence of lipshitz continuous functions which we apply component-wise to z* and b; is the

so-called Onsager correction term. This term removes a bias that is induced in each step of the algorithm
and allows for analysis through the state evolution equations. We denote these set of recursive equations as:

pie+1 = VAE [Xo fi (16 X0 + 0:Z0, Xo (¢))]
ot = E | fi (uXo + 0t Zo, Xo (5))2}

Where the expectation is taken over Xo ~ U({—1,1}), Zy ~ N(0,1) and By ~ Bernoulli (1 — ¢).



A common choice of f; is the Bayes Optimal function, letting D = u; Xo + 0:Zy = y, Xg = s, we define it as
fi = E[Xo|D]

The reason we make this choice is that it elicits a fixed point equation involving the mmse. This can be
seen by

a1 = VAE [XoE [Xo|D]]
= VAE [E [XoE [Xo|D] |D]|
= VAE[E [Xo|D] E [Xo|D]]
= VAE [E[X,|D]’]
= \/Xa—t%‘rl
and

Ut2+1 = 257t2+1 - Ut2+1
Hi+1
=2 \/X _U§+1
= B[Xo] - E[Xo] + 2F [XoF [Xo| D] - E [ [Xo| D)’

=E[X3] - E [(Xo - K [X()|D])2}
Due to the distribution of X¢ the first term is 1. For the second term we use the fact that observing
Y = u: Xo + 0+ 2y is equivalent to observing Y = \F/\Uon + 0+ Zy. This is equivalent to observing Y = U% =
vV )\J?XO + Z(). r]:‘hllS7
oi1 =1—(1—¢)mmse (Ao})

Where the (1 — ¢) is due to the proportion of times we simply observe the true label. We can unify these
two state evolution parameters into one by defining

Yt = >\0t2 = \/X/,Lt
Giving us the recursion

% =1—(1-¢)mmse(y)

= Y41 = A(1 = (1 —&)mmse (1))
Which converges to fixed point 7, which satisfies the all to familiar
Yo = M(1— (1= ) mmse (7.))

When using AMP as a proof technique we will show that the MSFE4p of the Bayes-sAMP estimate is a
upper bound for the M MSFE with a vanishing gap as n grows larger. We can formalize the limits of such a
test function of an AMP estimate in the following result due to Javanmard and Montanari,

Lemma 4.4 [2]: Given f; defined above and psuedo-lipshitz test function ¢ we have

lim = 30 (e, X0 X (),) = B[ (1.X0 + 0:Zo, Xo, Xo (2))

We can then see the limit as t — oo, i.e. our algorithm converges to its fixed point. One may be interested
as to why we care about the largest non-negative solution to the fixed point equation (x1). We will see in
(phase transition) subsection that this is the correct fixed point to choose. The existence of multiple fixed
points actually hints at a more general theory for AMP models which I will briefly discuss in the discussion
section.



2.2  (Universality)

2
% as the SBM’s signal to noise ration. Some intuition for

the choice is as follows. Let A, = ?259% we can then see that conditioned on X:

This section reveals why we chose A, =

G;j ~ Bernoulli (p,, + A, X; X))

Unconditional on X we have
E[GZJ] = Pn V[sz} = p;L(l - ﬁn)

So we can consider a shifted and scaled version of éij = \/%. Under this new Cu;'ij we see that
conitioned on X A
B [GylX| = —— XX,
Dn (1 - pn)

Perhaps (since the expectation and variance is 0 and 1), we can relate this to a more familiar model, what
is more familiar then Normality!

Recall the well-known spiked wigner model as,

Y (\) = AxxT 4z
n

Where X is the label vector as before and Z ~ GOE. We see that the expectation of Y;; conditioned on X

1S
A
ElYy|X] =/ - XiX;
n

So to give a connection between the two we solve

A A,
\/> XiXj = ———=XiX;
n VPn (1 = DPp)
Ao AL
Pn (1 - pn)
_ n(pn - Qn)2
4]5n (1 - ﬁn>
Of course this is just matching the conditional expectation. To solidify the connection to the Mutual

information more analysis is needed. We bound the per-vertex mutual information 1[I (X;G) — I (X;Y)|
by a value which vanishes as n — oc.

We can start with a obvious reduction to the mutual information as

Ipy|x (Y|X)}
Ipy (Y (A))

We see that for both the SBM and wigner models we can write

I(X:Y)=E [mg

VY — Opyix (YIX) ] _ apy x (Y]X)
I(X;Y)=EFE [1og S 2 oy, (Ylw)} =nlog2+ F [log W}

. _ 6pG\X (G|X) . 8pG‘X (G‘X)
I(X;G)=E {mg S 2" Opare (Gx)] =nlog2+E [1og W}

We then aim to pull out a second term in both models. Define the Hamiltonian H(V,\) = >_,_; Vij(ziz; —
X:X;)+ %xiijin and the function ¢(V') =log )" exp (H(V,\)). For the Spiked Wigner model we have:



Lemma 5.1

0 (YX) n—
E@%zfgiwwwﬂ( 3 - B [o (X2 )

Sketch: This is due to

Y = +/2XXT|2/4

bg%””m:mgm<” VXX /4)

Zw 5py\m (Ylz) Zw exp (—|Y— \/ExxTH%‘/ZL)
exp (—1Z]1%/4)

5o exp (<112 -+ \/3a /1)
by A )
= flog;exp ZZ” E (I’i{Ej — XiX]) — % (I’in — XlX])

= log

A A 2
= — logZexp Z ZIJ\/;(I}I] — X7XJ) - % ((Iizj)Q — 21’1£ZJJX1X] =+ (XIX])2)

i<j
A A
= flogZexp ZZ” ﬁ (xixj 7X1‘Xj) exp 7%227 2I1IJXZXJ
T i<j 1<J
A A
= — IOgZGXp Z Zij E (x,-xj - Xsz) exp —% n (n — 1) — Z QZinXin
T i<j 1<J
Aln—1) A
= T —10gZQXp ZZ,]\/;(ZCZJI] —XZX])—FZQT?Z‘]XZXJ
x i<j 1<J
Aln—1
= % - 1ogzx:exp (H(Z, )\/n))
Aln—1
A0 oz )
We take the expectation to reach our conclusion. )

Now to analyze the SBM model we will introduce some extra notation (which will be revealed throughout
the sketch):

Lemma 5.3

E |l = —Ey sl (X,GAp,n)| +0 | —2L2
. e (Glo) 2 xalo( ) 1B (L — D)




Sketch: We Have

Ipaix (G1X)

g [ic;(Pn + 8 XiX5) 9 (1 — P — D X X))~
Y. Ipaz (Glz)

g - — - .
Zw Hi<j(p” + Anxixj)Gu(l — Dn — Anmixj)l Gij

pn + Anirixj 1 _ﬁn - Anmi‘rj
=1 ylog [T 2mttT ) 4 (1— Gyy)] !
ngw:exp ;G / °8 (pn + AnXin> N ( G j) °8 <1 —Pn — AnXlX]

lo =lo

= —log Z exp (H)
When x = £+1 we have the following identity
1
log (a + br) = 3 log (a® +1%) + glog((a +0)/(a—b)
We can extend this to get for x and y = £1

o a+ bx _(f g)lo a+b
ga+by 22 ga—b

With @ = pp, b= A,, x = x;2; and y = X; X for the first term and similarly for the second term, applying
this to our work on the log ratio above we see

H_Z;(wzxj +X1X])< 9 log <pn—An> + 9 log 1—p, + A,

= 3ty ) (S (2020 ) + 57 (12—

Here we can invoke a bound for small enough z that

1 1
Lo (122) <

with z = A,,/py,, for the first term and simularly for the second term, this leads to

= Z (xiz; + X X;) <A;Gij - Anl = Gij)) + err,,

i<j 1 =pn




AnGij—Dnpn—A2XiX;)

Here err,, is the difference 2 terms, we have err,, < y/n. Letting G;; = we can rewrite

Ijn(l_ljn)
as
An i'l__n _An]-_ i'_n
:Z(ffixj-FXin)( Gyl ED) ,( Giy)p >+errn
i<j pn(l _pn)
A,Gii — Apy,
= Z (ximj —|— XlX]> (_f_p) + err,,
i<j pn( 7pn)
ALGii — AN — N2 X, X+ A2X, X
:Z(ﬂfz% + X:X;) ( : P T it S J) + err,
i<y pn(l - pn)
2v.Y.
= iz + X X G‘i-JrM + erry,
Z( j i) J
i<j pn(l _pn)
~ A X X5
= Z (.’lﬁil‘j + Xin) (G” + J) + err,
i<j n
)\n 2 ~ >\n
= Z —7(XZX]) + Gij ((Eil'j + XZXJ) + 7§Ci.’EjX7;X]' + err,
1<j n n
A (n—1 ~
= —% + Z’H(G,/\) + err,
i<j
So we can then see
Apcx (CIX) A (n— 1) .
8 Ope (Gle) B | T T g T MG A e
= = DA _ logZexp Z’H(@ An) + err
2 . / b) n n
xT 1<
(n—1)A, ~
= T 4 6(Gij M)
By characterizing the err,, term and taking the expectation we get our result. N

We are left with the expectations of ¢ and err < /n, we can bound the difference of the former by the

following:

Lemma 5.5

Exe {qﬁ (X, G, Ann)} = Exz [¢ (X;Z\/W, )\n)} ) (”Wz o, — A|>

Putting this all together we can see that

Proposition 4.1: Assume that as n — oo, A\, = A and np, (1 — p,) — oo. Then there is a constant C
independent of n such that

1 )\3/2
—[I(X;G) =1 (X;Y) | < C| —————= 1A — Al
n npn(lfpn)




2.3 (AMP for e-model)

Recall our general channel we defined in the (Fixed Point Eq.) subsection

Xo(g) = BoXo (Bo ~ Bernoulli (g))
Yo =7Xo+ %o

Under this model we can generalize our previous results to

Proposition 4.2: For any A > 0, € € (0,1) let 7. = 7. (A, €) be the largest non-negative solution of the
equation

y=A(1l—-(1—¢€mmse(y)) (*1)
We define ¥ (v, A, €) by

+

+elog2+ (1 —€)1(y)

~| >
i~

£
o2

U (y,\ € =

Then,
1
lim 7I(X7X(€)7Y) = \Ij(’y* (Aaé) 7>\a€)

n—00 N

Initially alot of my confusion was based the form of ¥, why is it that way? Intuitively can we construct ¥
from some simple observations about our fixed point equation and the AMP. First it is very illuminating to
see the derivatives of ¥. Before that, however, we invoke a well-known result.

I-MMSE Relation [3]: We have
oI (v)
Iy

= 5mmse ()

We take the differential of ¥ with respect to A and  to give us

oV (y,\e) v 1 1
9y =X 2—!-2(1 g) mmse (7y)

3‘1’(%/\,8)‘ _L( =

ox T4 A2

First we notice that the fixed point equation
Y= A= (1 - &) mmse (7))
can be derived by setting the derivative with respect to v and rearranging.

Second we notice the derivative with respect to A is this term connected with theorem 1.4, this is no
coincidence. We will see that this derivative is equal to the limiting matrix mean squared error of the AMP
algorithm (which we will eventually show is the M MSE) when both the number of iterations and the size
of the graph approaches infinity. This is defined rigorously in:

Lemma 6.3

MSEayp (M) = lim MSEanp (A, 6,n) =1 — 1L
n—00 A2
2
MSEA]\JP()\,E): lim MSEA]\/[P<t7)\,E>:1—l;
t—o00 by

10



Sketch: We have that
1
MSEanp(t:\en) = —E [||XXT - :zt:thH%}
1 44T 4T
= B [IXXT| + |t |17 - 211X |13

n2
4 st|4 st
[ B )

+
n? n? n?

Where 2 holds by the following (demonstrated on the first term)

IXXT|% =) (XX;)°

(2]

“(z)

=[1X113

We have || X||? = n? so the first term in (x2) evaluates to 1. Now we consider the last term. We know denote
o(#7 Xi, X (e)i) = XoE [Xol|pte—1Xo + 01-1Z0, X (€),]. By the State-evolution of AMP we have

R
nlifrgo " ;X(]E [Xolpe—1Xo + 0¢1—120, X (€))] = E [XoE [Xo|pe—1Xo + 01-120, X (€),]] = % \

As (X, 2')/n is bounded we then have

i 5[ 2550)

n—oo

We then find for the middle term in (%2) using ¢(217 1, Xy, X (e);) = E [Xo|ut—1Xo + 01120, X (5)0]2 that

1
Jim Z;E [Xolptt—1Xo + 04-17Z0, X (€),)° = [E [Xolpte—1Xo + 04-1Z0, X (€),)] } =02 = %
And simularly
, 1207 _
lim F —
nl—{r;o |: 7’L2 AZ
Thus the limit value of (*g) is
S
A2 A2 A2
Now letting t — oo we then get the second limit as
e
22

A

Finally to recover the function ¥ we need to know its value at a given point. We can derive such a value
through the methods of:

Lemma 6.2

Hm W (. (A e), A e) =elog?2
A—=0

lim W (v, (A e),\ ) =log2

A—00

11



Sketch: Construct the minimal linear mean squared error estimator. This estimator will have MSE of

(- () ok

So we know that mmse(y) < % Now plugging into (x1) we have

i+
7_/\<1—(1—5)1i7)

IT+M)y=A10+7)-A(1-¢)
YAy (1 =X =X =0

We then see that the largest root is of form

VLB=;<()\—1)+ ()\_1)2+4)\5>)\i>m=)\—(1_5)+0 (0<1)

We also observe that v, is bounded above by A by plugging A into (%;) and seeing that the left side is larger
than the right trivially. Thus
max(0,7.5) < ¥« < A

So as A = oo we have v* = X and plugging into ¥ gives

\IJ:2+%—%+(1—5)I(A)+slog2:(1—5)](/\)+510g2

We have that limy_,. I (\) = H(X) — H(Y|X) = log2. This is due the signal in the Gaussian channel
begin so high that knowing Y determines X. So,

lim ¥ =log?2

A—00

For the result as A — 0 we have the inequality v* < A. Thus,

Aoy XA
O<\I!:Z+1/\—%+(1—5)I(7*)+alog2§Z+Z—§+(1—5)I(7)+Elog2:(1—5)]()\*)+510g2

We see that as the signal approaches 0 that X and Y are independent to I(A) — 0. Thus,

lim ¥ = elog2
A—=0

Putting this all together we have shown:

Lemma 6.4

e < .
U (s ()\,6))\,6)1610g2+1/ MSEapp ()\,E) o\
0

Now we can relate how U (v, (A €) A, €) is equivalent to the mutual information. Before we approach this
argument we will need the following;:

Remark 6.5 We have the following facts about the mutual information
LL(XGY (0, X () = T (XXT;Y (A), X (2)) | < log2
2. limy oo 21 (XXT; X ()Y (0)) =elog2

3. limy_, oo liminf, %I (XXT;X (e),Y ()\)) =log2

12



The first fact is due to the following: For any r.v. R we have

H(X|R)—H (XXT|R) =H (X,XX"|R) — H (XX"|R) — (H (X,XX"|R) — H (X|R))
=H (X|XX",R) - H(XX"|X,R)

=H (X|XX",R) (As X deterines X X7
We then see that
H(X|XX",R) <H(X|XxXT) (Conditioning reduced entropy)
< log?2 (only two atoms X and —X can make X X7T)
Leading us to conclude
0< H(X|R)— H (XX"|R) < log2 (1)

We then see that
I(X;Y (N, X (2) - I (XXT;Y (V),X () =H(X) - H(X|Y,X (¢)) — (H (XXT") — H (XX"|Y, X (¢)))
=H(X)—H(XX") - (H(X|Y,X (¢)) + H(XXT|Y, X (¢)))

Applying () for R =@ and R = (Y, X (¢)) gives us the first result.

The second and third result can be logic-ed through is a similar way to the mutual information in the proof of
lemma 6.2. If there is no signal A = 0 then we can only reliable message ¢ log 2 nats of information (through
the Bernoulli realization of X(¢)). Similarly if we have a infinite signal to noise ratio we can realize the
mutual information as the entropy of X X7 minus a vanishing conditional entropy. )

Now we can sketch an argument for Proposition 4.2:
Sketch: We then see in the large n limit that we have the correct values for A =0 and A = oo

Now if we can match the derivative of ¥ and the derivative of 21 (XXT;Y (A), X (¢)) we could formalize
this argument and show proposition 4.2

First we apply the conditional - MMSE (GSVO05) to give use

T.
%aI(XX ,;/A(A),X(s)) :%ZE[(XZ»XJ-—E[Xin|Y()\)7X(g)])2}

i<j

= EMMSE (A e,n)

1
§ ZMSEAMP (t; )\,E,ﬂ)

(As the AMP estimator can at best achieve the minimum error)

We can not set up the following chain of inequalities (this is why we above showed the limit of ¥ in A)

13



(1-¢)log2 = lim liminf Ly oy, x @) - 1(x:v0), X (6)

—o00 n—oo N

1 A y y
— lim liminf - / MMSE ()\,e,n) oX
0

A—oo n—oo 4

1 ‘ ‘
lim lim limsupf/ MSEsvp (t;A,E,n) 12))\ (*3)
0

A—=00 t—=00 5 _yn0 4

IN

1 y ‘
= lim lim limsupf/ MSFEsnvp (t;)\,&n) oA
0

A—=00t—=00 1 y00 4
1A o .
lim lim -~ | MSEamp (t; )\,5) A%

A—00 t—00 0

.1 < <

= lim /0 MSEanp ()\75) X

= lm (¥ (4, A e) — U (74,0,¢€))
A—00

(1-¢)log2

So we can then see that the inequality in (x3) is an equality and as MM SE(\ e,n) < MSEanp(t; N e,n)
for all A we have
MSEAMP<)\,E) = lim MMSE()\,E,?’L)
n—oo
For almost all A, we can argue through montonicity and continuity to extend this to all A. So, we can have
(ignoring total formality)

: oI (XXT;Y (\), X
i L LY (N, X () _ 1O N XE) _ i LyarsE (v eon) = MSEavp(0.c)
n—oo N 8)\ n—oo 1N 8A n—oo 4

So ¥ also matches the derivative of lim,_,o =1 (X;Y (A), X (g)) and its value at A = 0 so we can conclude:

lim L7(X;Y (A), X (2)) = U(p(M,2), A, €)

n—oo 1

2.4 (c=0,+)

Now that we have analyzed the more general channel we can use these results to specify to the case that
€ = 0 we can easily see that setting € = 0 gives us our original ¥ in Theorem 1.1. To set the stage for thiis
limit we must show two things

1. I(X; X (e€),Y)/n has a well defined limit. This was proved in proposition 4.2

2. We can show the difference between I(X; X (g),Y)/n and I(X;Y") is vanishing when £ — 0, we can see
this as . ) .
—I(X;X(e),Y) — —I(X;Y)| < —I(X; X(¢),Y) < elog 2

n n n

Accounting for this we have
1
lim —I(X;Y) = lim ¥ (7, A, €)
e—0

n—oo N
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We have that ¥(y, A, ¢) is continuous in € and ~ and that the unique solution to the ¢ fixed point equation
~«(A, €) converges to v.(A). As the function 1 — mmse(y) is smooth and concave, we know -, satisfies the
equation:
¥ = A1 — mmse(7))
We then have )
lim —7(X;Y)=U(v. (A),A)

n—oo N
We then must show that
lim —|I (X;G) - —\11(7*( ),A)| =0

n—oo N

This was shown in Proposition 4.1

2.5 (Phase Transition)

We consider, again, our single-letter model. We preciously defined
mmse (7) = B (Xo - B [Xo[¥ ()))*
Under scalar model, we can simplify the mmse term above. First we have
E[X[Yo] = P (Xo = 1[Yp) — P (Xo = —1[}p)

(Yo —vA) — f (Yo +.A)
(Yo —A) +f(Yo+A)

eYovi — e~ Yo7
= tanh Y5/y
= tanh Xoy + Zo/y

(f is the stanard gaussian PDF)

And then we can reduce the mmse to
mmse() = E [(Xo — E[XolYo (7)])’]
= B [X3 — 2XoB [Xo|Yo (7)] + E [Xo[Yo (4)]*]
= 1= 2B [XoE [Xo|Yo ()] + B [E[Xo[Yo (7)]’]
—1-2E [ [Xo|Yo (v 2} [ [Xo|Yo ()] } (By The Tower PRoprty of Cond. Exp)
=1-B [B[X|Y ()]

=1-F [tanh (v+ \FyZO)Q]
=1-G(y)

Notice that (%1) can be rewritten as the equivalent fixed point equation
7 =XG(7)

Thus an analysis of G (y) will reveal the possible solutions to equation (%1). We note the following without
proof

1. Utilizing the continuity of tanh we have that G is a continious function
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2. We see that G(0) = E[tanh(0)?] = E[0] =0
3. As lim,_, o tanh 2 = 1 we also have that lim,_,, G(y) =1

4. we also have that G is monotone increasing and strictly concave on [0,00) so it will have at most 2
fixed points (one of which is trivially 0)

We also need to analyze the derivative of G with respect to v we do this as

E % tanh (v + WZ)Q] —F {2 tanh (v + \/7Z) (1 — (tanh (y + ﬁZ))Q) (1 + 2\%2)}

{2 (v — A Z) (1 o ﬁZ)Q) (1 + Q\%Z)} (Taylor Expand)

E
E [Z 2] (only term free of v and has Z of even power)
1

Thus we have A\G’ (0) = A, leading us to conclude that a non-zero fixed point will only occur for A > 1. This
fixed point is trivially larger than the other known fixed point 0 so we define the value of v, as the largest
solution to the fixed point equation.

2.6 (I-MMSE Relation)

Section 7 presents an argument which bounds the difference of ¥ and the M MSE.

First we will find it convenient two rewrite how p,, and ¢, are defined. Once could motivate this form as a
version of Noise + Signal. We parameterize p,, and ¢, with parameter 6 as

— Z_)n 171_711 — ﬁn 171_711
Pn:anr\/ ( )0 Gn = Pn —\/ ( )9
n n

We can then formalize the difference between the derivative of the mutual information and the MMSE through
the following lemma (which is proved from results by Measson, Montanari, Richardson, and Urbanke [4]).

Lemma 7.2 Let I(X;G) be the mutual information of the two-group stochastic block models with param-
eters p, = pn(#) and ¢ = ¢,(0). Then

1 91 (X;@) 1 0 1
- ' 7 _ < -  —
- 7 MMSE,, (9)‘ < max ( - (1 7n), n)

We have now formalized the ability to take the derivative of lim,,_, %I (X;G) = iM MSE. We can then
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finish the relationship from Theorem 1.1 to Theorem 1.4 By:

)\2 )\2 .
lim }MMSE 00 = lim 1 01(X56) 00 (Lemma 7.2)
n—o0 Sy, n—oo Jy, N 00
= U(ve (A2), A2) = U (7 (A1), A1) (Theorem 1.1)
A2
= / —8\11 (7= (A),A) OA (Lemma 6.4)
A OA
/\2 « AQ
:/)\ (1 7 /52 )> oA (Lemma 6.3)
)\2 ,y* (92)
= /}\ 1 1- 02 00 (Re-Assign Dummy Variable)

Thus we have (through similar arguments as the end of Subsection 2.3)

.1 Vx (92)
hmZMMSE: (1— 02

3 Discussion

Over all I really enjoyed this paper, I think answers a important question for a very relevant model in
applications. Th SBM is used in many areas (social media political networks always come to mind) and
knowing the fundamental limits of achievability is important. I would like to mention what I believe is the
most innovative aspect of this paper, the impact AMP it leaves on theory. Of course this is hard to judge
as the question answered here is very directly related with one specific model. We can, however, extract an
argument from this paper and compare with a similar argument from around this time.

This paper gives a good introduction to using AMP as a proof mechanism. One of the largest success in
AMP theory is that one can utilize a well thought-out choice for f; and, in many cases, this choice will
provide an easy to analyze algorithm which can achieve the minimum of a estimation metric. This cannot
be understated, I will mention an application whose question seems unconnected but their analysis is almost
identical.3

M-Estimation with large p [5]:

Consider a Model
Y =X0+W

Where Y is a response vector, X is a design matrix and W is a per index iid noise vector. We can define a
M-estimator through a non-negative Convex Function p : R — R=°

Oy = argmam;p(yi —(X;,0))

We see that choosing p(-) = % log(fw(-))) leads to the MLE estimate. We have from classical statistical
theory that the asymptotic distribution of 6—0is N (0,V), where the asymptotic variance V' is

V =U(¢, Fw)(XTX)™!

3Thank you to Zhou Fan, I found out this result through his course
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- )
With U(¢, F) = % and ¢ = p/. We see that, as expected, using p(-) = %log(fw(-))) elicits
U = ﬁ@' Fascinatingly, if wee consider a large number of both observations and predictions under the
paradigm n,p — oo, n/p — § € (1,00), we see that asymptotic variance above is wrong. We instead have

the following result:

Theorem
Assuming that p is strongly convex ans smooth with X being stanrads guassian design with § > 1 and Fy
has finite second moment. Let (74, b.) be the fixed point equation to the set of equations

2 = SE[W(W 4+ 7Z;b)?]
% — BE[V'(W + 77 B)]
Where ¥(z;b) = p(2), pp(z) = ming (bp(z) + 4(z — 2)?) and Z ~ N(0,1)

lim > V0] = U(W(-,b), Fw = N(0,72))

n,p—r o0 p 1

Giving the asymptotic covariance matrix as

V =U(U(-,b,), Fy * N0, 72))E[(XT X))

An application of this theorem shows that high-dimensional confidence regions for M-estimators have incor-
rect coverage when using the classical formula for the covariance matrix. One can begin to see the familiarizes
between the SMB result of theorem 1.1 and the above result. Even more striking, the methods for proving
both results have many similarities. They both roughly follow the same outline:

1. Introduce an AMP algorithm for the application
2. Find a fixed point for the state evolution equations

Analyze a test function (For example MSE) at the limiting iterate

Ll

Show the test function is the same for AMP and a given estimator

5. (optional) Use the test function to derive other quantities

Overall, I really enjoyed seeing this argument in action for both papers. In the SBM paper, it was delivered
in a interesting way and It is very clear how using AMP has broader applications.

As for issues that the paper has, I mainly found two parts of the paper to be sub-optimal.

First, I have an issue with the assumptions made in the paper. Even though dense graphs like this paper
assumes do have applications, the most important regime of a fixed average number of vertices is left
out. We argued in the Results section how we can force though a large but bounded degree, often our
data may just not fit this criterion. I turns out that to analyze this case requires much more complicated
machinery. Coja-Oghlan, Krzakala, Perkins, and Zdeborova [6] formalized the use of the cavity method,
a well known statistical-physics method, in the context of the SBM. Then, they are able to elicit a form
for the mutual information. The connection between these papers is tenuous, [6] did not utilize AMP.
There is one connection, however, between these two papers, mainly that the cavity method is commonly
associated through belief propagation and the AMP can be derived from belief propagation. Current research
investigates this connection though the relation between AMP and the Cavity method, of which there are
some interesting results.
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Second, I didn’t really enjoy the section on showing the mutual information bounds between X; G and X;Y,
I found it to be overly challenging to understand. This is mainly due to the number of inequalities and
approximations which are needed to formalize the result*. I have tried to present the major connections that
I saw throughout the paper but I would have appreciated if the authors gave a more high-level explanation
of why the result holds, then leave all the gritty details in the appendix.
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