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1 Results:

This paper analyzes the stochastic block model (SBM), specifically under two groups. It quantifies the
asymptotic per-vertex mutual information and asymptotic estimation metrics. To define this model, consider
a label vector X with the following properties:

1. each element of X = {Xi}i∈1:n, is ± 1 (indicating they are in the positive or negative group)

2. It is a bisection, i.e.
∑

iXi = 0 (We also can analyze the case where each index is drawn from
Bernoulli (1/2) as this will concentrate about such X).

Now lets consider an undirected graph of n nodes with labels 1 : n. We want to connect edges between these
node to represent a relationship between the nodes. We would like to do this in a way that represents if
the nodes belong to the same group. We give two distributions P and Q in which edge weights are drawn
between two nodes (say Ei,j for the edge between nodes i and j) can be drawn from in the following way

Ei,j ∼

{
P if XiXj = 1

Q if XiXj = −1

We then form a graph G with vertices 1 : n and edges E. Depending on our choice of P and Q we are able
to elicit some well known models. For example the famous spiked wigner model can be created from

P = N

(√
µ

n
, 1

)
Q = N

(
−
√
µ

n
, 1

)
In our case we will study a different choice of P and Q, that of

P = Bernoulli (pn) Q = Bernoulli (qn)

This elicits the stochastic block model.

As for the results, this paper makes a further assumption on the values of pn and qn as n → ∞. With
p̄n = 1

2 (pn + qn) we require
np̄n(1− p̄n) → ∞ (A)

this is a difficult assumption to justify as there is a large mount of interest in a situation where edge generating
distribution is

pn =
a

n
qn =

b

n
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This is due to this model having a average edge count of order 1. We can see that this choice of P and Q
barely does not comply with (A) as

p̄n =
a+ b

n
=⇒ np̄n (1− p̄n) = Θ(1)

Notice, however, that if we had n1−ε on the denomentaor of pn and qn we would have:

p̄n =
a+ b

n1−ϵ
=⇒ np̄n (1− p̄n) → ∞

Thus, if a and b are particularly large can still justify this approach as we can consider them as having an
arbitrarily slow growth rate. This means that we can handle bounded yet large average degree cases (like
above) with a vanishing error.

As we mentioned previously, the purpose of this paper was to show the limiting per-vertex mutual information
1
nI(X;G). This quantity is of its own interest and, perhaps even more useful, it intimately related with our
ability to estimate X from G. The authors are able to reduce the SBM model into a “single-letterization”.
This means that we can consider the per-index mutual information as a function of a much simpler scalar
model. The single-letter model used is the following Gaussian channel1:

Y0 =
√
γX0 + Z0

where we have X0 ∼ Uniform ({−1}, {+1}) and Z0 ∼ Normal (0, 1). We can then define

I (γ) = E log

(
dpy|x (Y0 (γ)x0)

dpy (Y0 (γ))

)
mmse (γ) = E

[
(X0 − E [X0|Y0 (γ)])2

]

I can now introduce the first of two major results:

Theorem 1.1: For any λ > 0, let γ∗ = γ∗ (λ) be the largest non-negative solution of the equation

γ = λ (1−mmse (γ)) (⋆1)

We name γ∗ (λ) the effective signal to noise ratio. Further we define Ψ (γ, λ) by

Ψ (γ, λ) =
λ

4
+
γ2

4λ
+ I (γ)

Let G and X be distributed according to the stocastic block model with n vertices and parameters pn and
qn. Define

λn = n (pn − qn)
2
/ (4p̄n (1− p̄n))

Then as n→ ∞, we assume that λn → λ and np̄n (1− p̄n) → ∞. Then,

lim
n→∞

1

n
I (x;G) = Ψ (γ∗ (λ) , λ)

It turns out that this result on the per-vertex mutual information can also be worked into a statement about
estimation metrics. The canonical metric here is the matrix minimum mean square error, for reasons we will
see in the proofs below. We define the matrix minimum mean square error as:

MMSEn (λ) =
1

n (n− 1)
E
[
||XXT − E

[
XXT |G

]
||2F
]

1This paper indicates this scalar model by a 0 subscript
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We also note that the MMSE ∈ (0, 1) and where MMSE = 0 means recovery of all of the labels for X up
to sign and MMSE = 1 means we are not better off then random guessing. Thus we can reformulate the
information theoretic Theorem 1.1 into a theorem about large sample statistical estimation:

Theorem 1.4 Under the assumptions of Theorem 1.1, for any λ > 0, let γ∗ = γ∗ (λ) be the largest non-
negative solutiona of the equation

γ = λ (1−mmse (γ)) (⋆1)

We have the following limit:

lim
n→∞

MMSEn (λn) = 1− γ∗ (λ)
2

λ2

When λ ≤ 1, we have γ∗ = 0 and limMMSE = 1
When λ > 1, we have γ∗ > 0 and limMMSE =< 1

aThroughout this paper I may abbreviate γ∗ if the parameters it relies on are obvious

So we recover the phase transition we have in class

λ = limλn = limn (pn − qn)
2
/ (4p̄n (1− p̄n)) ≷ 1

Unfortunately, the MMSE is not the most intuitive way to think about this estimation problem. Clearly a
count of the correct versus incorrect labels (up to a sign change) is much more relvent to our problem. A
metric which captures this information quite well is the overlap, defined as

Overlap(λ) =
1

n
sup
x̂
E [|⟨X, x̂⟩|]

Where the supremum is taken over all estimators x̂ where the value of each index of x̂ is either plus of minus
1. Intuitively this measures (up to a sign change) what proportion the best estimator overlaps with the true
labels. This paper establish a similar phase transition as above where of λ ≤ 1 then in the large n limit we
have

Overlap(λ) → 0

which mean no estimator can achieve recovery better than random guessing. When λ ≥ 1 we have in the
large n limit that2

0 <
γ∗ (λ)

2

λ2
≤ Overlap(λ)

Meaning that we have establish a similar bound for the overlap and can conclude the threshold for correlated
recovery agrees with the MMSE metric above. We can only achieve correlated recovery when:

limn (pn − qn)
2
/ (4p̄n (1− p̄n)) > 1

2 Proofs

Below we have a flow chart which show the order of logic between different sections of this paper. The
direction of the arrows show which Lemmas/Theorems are used to prove certain results in our papers.

2I am going to state these without proof since the real meat of the paper is the above two theorem.
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Figure 1: The order of logic in proving Theorems 1.1 and 1.4

2.1 (Fixed Point Eq.)

Here I will give a brief introduction to AMP theory and give some intuition on where the fixed point equation
comes from.

First we embed our guassian channel into a more extensive model. We consider alongside our output Y0 a
secondary output X0(ε) which is the output from a binary erasure channel. Meaning we reveal the true label
X0 with probability 1− ε (erasing it with probability ε). This gives model

X0(ε) = B0X0 (B0 ∼ Bernoulli (ε))

Y0 =
√
γX0 + Z0

The AMP algorithm for the vectorization of this more general scalar problem is of the form

xt+1 =
Y√
n
ft
(
xt, X (ε)

)
− btft−1

(
xt−1, X (ε)

)
bt =

1

n

n∑
i=1

f ′t
(
xti, X (ε)i

)
Where ft is a sequence of lipshitz continuous functions which we apply component-wise to xt and bt is the
so-called Onsager correction term. This term removes a bias that is induced in each step of the algorithm
and allows for analysis through the state evolution equations. We denote these set of recursive equations as:

µt+1 =
√
λE [X0ft (µtX0 + σtZ0, X0 (ε))]

σ2
t+1 = E

[
ft (µtX0 + σtZ0, X0 (ε))

2
]

Where the expectation is taken over X0 ∼ U({−1, 1}), Z0 ∼ N(0, 1) and B0 ∼ Bernoulli (1− ε).
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A common choice of ft is the Bayes Optimal function, letting D = µtX0 + σtZ0 = y,X0 = s, we define it as

ft = E [X0|D]

The reason we make this choice is that it elicits a fixed point equation involving the mmse. This can be
seen by

µt+1 =
√
λE [X0E [X0|D]]

=
√
λE [E [X0E [X0|D] |D]]

=
√
λE [E [X0|D]E [X0|D]]

=
√
λE
[
E [X0|D]

2
]

=
√
λσ2

t+1

and

σ2
t+1 = 2σ2

t+1 − σ2
t+1

= 2
µt+1√
λ

− σ2
t+1

= E [X0]− E [X0] + 2E [X0E [X0|D]]− E
[
E [X0|D]

2
]

= E
[
X2

0

]
− E

[
(X0 − E [X0|D])

2
]

Due to the distribution of X0 the first term is 1. For the second term we use the fact that observing
Y = µtX0 + σtZ0 is equivalent to observing Y =

√
λσ2

tX0 + σtZ0. This is equivalent to observing Ỹ = Y
σt

=√
λσ2

tX0 + Z0. Thus,

σ2
t+1 = 1− (1− ε)mmse

(
λσ2

t

)
Where the (1 − ε) is due to the proportion of times we simply observe the true label. We can unify these
two state evolution parameters into one by defining

γt = λσ2
t =

√
λµt

Giving us the recursion

γt+1

λ
= 1− (1− ε)mmse (γt)

=⇒ γt+1 = λ (1− (1− ε)mmse (γt))

Which converges to fixed point γ∗ which satisfies the all to familiar

γ∗ = λ (1− (1− ε)mmse (γ∗))

When using AMP as a proof technique we will show that the MSEAMP of the Bayes-AMP estimate is a
upper bound for the MMSE with a vanishing gap as n grows larger. We can formalize the limits of such a
test function of an AMP estimate in the following result due to Javanmard and Montanari,

Lemma 4.4 [2]: Given ft defined above and psuedo-lipshitz test function ψ we have

lim
n→∞

1

n

n∑
i=1

ψ
(
xti, Xi, X (ε)i

)
= E [ψ (µtX0 + σtZ0, X0, X0 (ε))]

We can then see the limit as t → ∞, i.e. our algorithm converges to its fixed point. One may be interested
as to why we care about the largest non-negative solution to the fixed point equation (⋆1). We will see in
(phase transition) subsection that this is the correct fixed point to choose. The existence of multiple fixed
points actually hints at a more general theory for AMP models which I will briefly discuss in the discussion
section.
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2.2 (Universality)

This section reveals why we chose λn = (pn−qn)
2

4p̄n(1−p̄n)
as the SBM’s signal to noise ration. Some intuition for

the choice is as follows. Let ∆n = pn−qn
2 we can then see that conditioned on X:

Gij ∼ Bernoulli (p̄n +∆nXiXj)

Unconditional on X we have
E[Gij ] = p̄n V [Gij ] = p̄n(1− p̄n)

So we can consider a shifted and scaled version of Ğij =
Gij−p̄n√
p̄n(1−p̄n)

. Under this new Ğij we see that

conitioned on X

E
[
Ğij |X

]
=

∆n√
p̄n (1− p̄n)

XiXj

Perhaps (since the expectation and variance is 0 and 1), we can relate this to a more familiar model, what
is more familiar then Normality!

Recall the well-known spiked wigner model as,

Y (λ) =

√
λ

n
XXT + Z

Where X is the label vector as before and Z ∼ GOE. We see that the expectation of Yij conditioned on X
is

E[Yij |X] =

√
λ

n
XiXj

So to give a connection between the two we solve√
λ

n
XiXj =

∆n√
p̄n (1− p̄n)

XiXj

λ =
n∆2

n

p̄n (1− p̄n)

=
n(pn − qn)

2

4p̄n (1− p̄n)

Of course this is just matching the conditional expectation. To solidify the connection to the Mutual
information more analysis is needed. We bound the per-vertex mutual information 1

n |I (X;G) − I (X;Y ) |
by a value which vanishes as n→ ∞.

We can start with a obvious reduction to the mutual information as

I(X;Y ) = E

[
log

∂pY |X (Y |X)

∂pY (Y (λ))

]
We see that for both the SBM and wigner models we can write

I(X;Y ) = E

[
log

∂pY |X (Y |X)∑
x 2

−n ∂pY |x (Y |x)

]
= n log 2 + E

[
log

∂pY |X (Y |X)∑
x ∂pY |x (Y |x)

]

I(X;G) = E

[
log

∂pG|X (G|X)∑
x 2

−n ∂pG|x (G|x)

]
= n log 2 + E

[
log

∂pG|X (G|X)∑
x ∂pG|x (G|x)

]

We then aim to pull out a second term in both models. Define the Hamiltonian H(V, λ) =
∑

i<j Vij(xixj −
XiXj) +

λ
nxixjXiXj and the function ϕ(V ) = log

∑
x exp (H(V, λ)). For the Spiked Wigner model we have:
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Lemma 5.1

E

[
log

∂pY |X (Y |X)∑
x ∂pY |x (Y |x)

]
=

(n− 1)λ

2
− EX,Z

[
ϕ
(
X;Z

√
λ/n, λ, n

)]
Sketch: This is due to

log
∂pY |X (Y |X)∑
x ∂pY |x (Y |x)

= log

exp

(
−||Y −

√
λ
nXX

T ||2F /4
)

∑
x exp

(
−||Y −

√
λ
nxx

T ||2F /4
)

= log
exp

(
−||Z||2F /4

)
∑

x exp

(
−||Z +

√
λ
nxx

T ||2F /4
)

= − log
∑
x

exp

∑
i<j

Zij

√
λ

n
(xixj −XiXj)−

λ

2n
(xixj −XiXj)

2


= − log

∑
x

exp

∑
i<j

Zij

√
λ

n
(xixj −XiXj)−

λ

2n

(
(xixj)

2 − 2xixjXiXj + (XiXj)
2
)2

= − log
∑
x

exp

∑
i<j

Zij

√
λ

n
(xixj −XiXj)

 exp

− λ

2n

∑
i<j

2− 2xixjXiXj


= − log

∑
x

exp

∑
i<j

Zij

√
λ

n
(xixj −XiXj)

 exp

− λ

2n

n (n− 1)−
∑
i<j

2xixjXiXj


=
λ (n− 1)

2
− log

∑
x

exp

∑
i<j

Zij

√
λ

n
(xixj −XiXj) +

∑
i<j

2xixjXiXj


=
λ (n− 1)

2
− log

∑
x

exp
(
H(Z,

√
λ/n)

)
=
λ (n− 1)

2
− ϕ(Z,

√
λ/n)

We take the expectation to reach our conclusion. ¢

Now to analyze the SBM model we will introduce some extra notation (which will be revealed throughout
the sketch):

Lemma 5.3

E

[
log

∂pG|X (G|X)∑
x ∂pG|x (G|x)

]
=

(n− 1)λn
2

− EX,G̃

[
ϕ
(
X, G̃, λn, n

)]
+O

(
nλ3/2√

np̄n (1− p̄n)

)
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Sketch: We Have

log
∂pG|X (G|X)∑
x ∂pG|x (G|x)

= log

∏
i<j(p̄n +∆nXiXj)

Gij (1− p̄n −∆nXiXj)
1−Gij∑

x

∏
i<j(p̄n +∆nxixj)Gij (1− p̄n −∆nxixj)1−Gij

= − log
∑
x

exp

∑
i<j

Gij log

(
p̄n +∆nxixj
p̄n +∆nXiXj

)
+ (1−Gij) log

(
1− p̄n −∆nxixj
1− p̄n −∆nXiXj

)
= − log

∑
x

exp (H)

When x = ±1 we have the following identity

log (a+ bx) =
1

2
log
(
a2 + b2

)
+
x

2
log ((a+ b) / (a− b))

We can extend this to get for x and y = ±1

log

(
a+ bx

a+ by

)
= (

x

2
− y

2
) log

(
a+ b

a− b

)
With a = p̄n, b = ∆n, x = xixj and y = XiXj for the first term and similarly for the second term, applying
this to our work on the log ratio above we see

H =
∑
i<j

(xixj +XiXj)

(
Gij

2
log

(
pn +∆n

pn −∆n

)
+

1−Gij

2
log

(
1− pn −∆n

1− pn +∆n

))

=
∑
i<j

(xixj +XiXj)

(
Gij

2
log

(
1 + ∆n/pn
1−∆n/pn

)
+

1−Gij

2
log

(
1−∆n/(1− pn)

1 + ∆n/(1− pn)

))
Here we can invoke a bound for small enough z that

|1
2
log

(
1 + z

1− z

)
− z| ≤ z3

with z = ∆n/p̄n for the first term and simularly for the second term, this leads to

=
∑
i<j

(xixj +XiXj)

(
∆nGij

p̄n
− ∆n(1−Gij)

1− p̄n

)
+ errn
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Here errn is the difference z3 terms, we have errn ≤∼
√
n. Letting G̃ij =

∆nGij−∆np̄n−∆2
nXiXj)

p̄n(1−p̄n)
we can rewrite

as

=
∑
i<j

(xixj +XiXj)

(
∆nGij(1− p̄n)−∆n(1−Gij)p̄n

p̄n(1− p̄n)

)
+ errn

=
∑
i<j

(xixj +XiXj)

(
∆nGij −∆p̄n
p̄n(1− p̄n)

)
+ errn

=
∑
i<j

(xixj +XiXj)

(
∆nGij −∆np̄n −∆2

nXiXj +∆2
nXiXj

p̄n(1− p̄n)

)
+ errn

=
∑
i<j

(xixj +XiXj)

(
G̃ij +

∆2
nXiXj

p̄n(1− p̄n)

)
+ errn

=
∑
i<j

(xixj +XiXj)

(
G̃ij +

λnXiXj

n

)
+ errn

=
∑
i<j

−λn
n
(XiXj)

2 + G̃ij (xixj +XiXj) +
λn
n
xixjXiXj + errn

= −λn (n− 1)

2
+
∑
i<j

H(G̃, λ) + errn

So we can then see

log
∂pG|X (G|X)∑
x ∂pG|x (G|x)

= − log
∑
x

exp

−λn (n− 1)

2
+
∑
i<j

H(G̃, λn) + errn


=

(n− 1)λn
2

− log
∑
x

exp

∑
i<j

H(G̃, λn) + errn


=

(n− 1)λn
2

+ ϕ(G̃ij , λn)

By characterizing the errn term and taking the expectation we get our result. ¢

We are left with the expectations of ϕ and err ≤∼
√
n, we can bound the difference of the former by the

following:

Lemma 5.5

EX,G̃

[
ϕ
(
X, G̃, λn, n

)]
= EX,Z

[
ϕ
(
X;Z

√
λ/n, λ, n

)]
+O

(
nλ3/2√

np̄n (1− p̄n)
+ n|λn − λ|

)

Putting this all together we can see that

Proposition 4.1: Assume that as n → ∞, λn → λ and np̄n (1− p̄n) → ∞. Then there is a constant C
independent of n such that

1

n
|I (X;G)− I (X;Y ) | ≤ C

(
λ3/2√

np̄n (1− p̄n)
+ |λn − λ|

)
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2.3 (AMP for ε-model)

Recall our general channel we defined in the (Fixed Point Eq.) subsection

X0(ε) = B0X0 (B0 ∼ Bernoulli (ε))

Y0 =
√
γX0 + Z0

Under this model we can generalize our previous results to

Proposition 4.2: For any λ > 0, ϵ ∈ (0, 1) let γ∗ = γ∗ (λ, ϵ) be the largest non-negative solution of the
equation

γ = λ (1− (1− ϵ)mmse (γ)) (⋆1)

We define Ψ (γ, λ, ϵ) by

Ψ (γ, λ, ϵ) =
λ

4
+
γ2

4λ
− γ

2
+ ϵ log 2 + (1− ϵ) I (γ)

Then,

lim
n→∞

1

n
I (X;X (ϵ) , Y ) = Ψ (γ∗ (λ, ϵ) , λ, ϵ)

Initially alot of my confusion was based the form of Ψ, why is it that way? Intuitively can we construct Ψ
from some simple observations about our fixed point equation and the AMP. First it is very illuminating to
see the derivatives of Ψ. Before that, however, we invoke a well-known result.

I-MMSE Relation [3]: We have
∂I (γ)

∂γ
=

1

2
mmse (γ)

We take the differential of Ψ with respect to λ and γ to give us

∂Ψ(γ, λ, ε)

∂γ
=

γ

2λ
− 1

2
+

1

2
(1− ε)mmse (γ)

∂Ψ(γ, λ, ε)

∂λ
|γ=γ∗ =

1

4

(
1− γ2∗

λ2

)

First we notice that the fixed point equation

γ = λ (1− (1− ε)mmse (γ))

can be derived by setting the derivative with respect to γ and rearranging.

Second we notice the derivative with respect to λ is this term connected with theorem 1.4, this is no
coincidence. We will see that this derivative is equal to the limiting matrix mean squared error of the AMP
algorithm (which we will eventually show is the MMSE) when both the number of iterations and the size
of the graph approaches infinity. This is defined rigorously in:

Lemma 6.3

MSEAMP (t;λ, ε) = lim
n→∞

MSEAMP (t;λ, ε, n) = 1− γ2t
λ2

MSEAMP (λ, ε) = lim
t→∞

MSEAMP (t;λ, ε) = 1− γ2∗
λ2
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Sketch: We have that

MSEAMP (t;λ, ε, n) =
1

n2
E
[
||XXT − x̂tx̂t

T

||2F
]

=
1

n2
E
[
||XXT ||2F + ||x̂tx̂t

T

||2F − 2||Xx̂t
T

||2F
]

= E

[
||X||4

n2
+

||x̂t||4

n2
− 2

⟨X, x̂t⟩
n2

]
(⋆2)

Where ⋆2 holds by the following (demonstrated on the first term)

||XXT ||2F =
∑
i,j

(XiXj)
2

=

(∑
i

xi

)2

= ||X||22

We have ||X||2 = n2 so the first term in (⋆2) evaluates to 1. Now we consider the last term. We know denote
ϕ(x̂t−1

i , Xi, X(ε)i) = X0E [X0|µt−1X0 + σt−1Z0, X (ε)0]. By the State-evolution of AMP we have

lim
n→∞

1

n

n∑
i=1

X0E [X0|µt−1X0 + σt−1Z0, X (ε)0] = E [X0E [X0|µt−1X0 + σt−1Z0, X (ε)0]] =
µt√
λ
=
γt
λ

As ⟨X, x̂t⟩/n is bounded we then have

lim
n→∞

E

[
⟨X, x̂t⟩
n2

]
=
γ2t
λ2

We then find for the middle term in (⋆2) using ϕ(x̂
t−1
i , Xi, X(ε)i) = E [X0|µt−1X0 + σt−1Z0, X (ε)0]

2
that

lim
n→∞

1

n

n∑
i=1

E [X0|µt−1X0 + σt−1Z0, X (ε)0]
2
= E

[
E [X0|µt−1X0 + σt−1Z0, X (ε)0]

2
]
= σ2

t =
γt
λ

And simularly

lim
n→∞

E

[
||x̂t||4

n2

]
=
γ2t
λ2

Thus the limit value of (⋆2) is

1 +
γ2t
λ2

− 2
γ2t
λ2

= 1− γ2t
λ2

Now letting t→ ∞ we then get the second limit as

1− γ2∗
λ2

¢

Finally to recover the function Ψ we need to know its value at a given point. We can derive such a value
through the methods of:

Lemma 6.2

lim
λ→0

Ψ(γ∗ (λ, ε) , λ, ε) = ε log 2

lim
λ→∞

Ψ(γ∗ (λ, ε) , λ, ε) = log 2

11



Sketch: Construct the minimal linear mean squared error estimator. This estimator will have MSE of

(1− ρ)2σ2
X =

(
1−

( √
γ

1 + γ

)2
)

=
1

1 + γ

So we know that mmse(γ) ≤ 1
1+γ . Now plugging into (⋆1) we have

γ = λ

(
1− (1− ε)

1

1 + γ

)
(1 + γ) γ = λ (1 + γ)− λ (1− ε)

γ2 + γ (1− λ)− λε = 0

We then see that the largest root is of form

γLB =
1

2

(
(λ− 1) +

√
(λ− 1)

2
+ 4λε

)
λ→∞→ = λ− (1− ε) + o (o <∼ 1)

We also observe that γ∗ is bounded above by λ by plugging λ into (⋆1) and seeing that the left side is larger
than the right trivially. Thus

max(0, γLB) ≤ γ∗ ≤ λ

So as λ→ ∞ we have γ∗ = λ and plugging into Ψ gives

Ψ =
λ

4
+
λ

4
− λ

2
+ (1− ε) I (λ) + ε log 2 = (1− ε) I (λ) + ε log 2

We have that limλ→∞ I (λ) = H (X) − H (Y |X) = log 2. This is due the signal in the Gaussian channel
begin so high that knowing Y determines X. So,

lim
λ→∞

Ψ = log 2

For the result as λ→ 0 we have the inequality γ∗ ≤ λ. Thus,

0 < Ψ =
λ

4
+
γ∗

2

4λ
− γ∗

2
+ (1− ε) I (γ∗)+ ε log 2 ≤ λ

4
+
λ

4
− λ

2
+ (1− ε) I (γ)+ ε log 2 = (1− ε) I (λ∗)+ ε log 2

We see that as the signal approaches 0 that X and Y are independent to I(λ) → 0. Thus,

lim
λ→0

Ψ = ε log 2

¢

Putting this all together we have shown:

Lemma 6.4

Ψ(γ∗ (λ, ε)λ, ε) = ε log 2 +
1

4

∫ λ

0

MSEAMP

(
λ̆, ε
)
∂λ̆

Now we can relate how Ψ(γ∗ (λ, ε)λ, ε) is equivalent to the mutual information. Before we approach this
argument we will need the following:

Remark 6.5 We have the following facts about the mutual information

1. |I (X;Y (λ) , X (ε))− I
(
XXT ;Y (λ) , X (ε)

)
| ≤ log 2

2. limn→∞
1
nI
(
XXT ;X (ε) , Y (0)

)
= ε log 2

3. limλ→∞ lim infn→∞
1
nI
(
XXT ;X (ε) , Y (λ)

)
= log 2

12



The first fact is due to the following: For any r.v. R we have

H (X|R)−H
(
XXT |R

)
= H

(
X,XXT |R

)
−H

(
XXT |R

)
−
(
H
(
X,XXT |R

)
−H (X|R)

)
= H

(
X|XXT , R

)
−H

(
XXT |X,R

)
= H

(
X|XXT , R

)
(As X deterines XXT )

We then see that

H
(
X|XXT , R

)
≤ H

(
X|XXT

)
(Conditioning reduced entropy)

≤ log 2 (only two atoms X and −X can make XXT )

Leading us to conclude
0 ≤ H (X|R)−H

(
XXT |R

)
≤ log 2 (†)

We then see that

I (X;Y (λ) , X (ε))− I
(
XXT ;Y (λ) , X (ε)

)
= H (X)−H (X|Y,X (ε))−

(
H
(
XXT

)
−H

(
XXT |Y,X (ε)

))
= H (X)−H

(
XXT

)
−
(
H (X|Y,X (ε)) +H

(
XXT |Y,X (ε)

))
Applying (†) for R = ∅ and R = (Y,X(ε)) gives us the first result.

The second and third result can be logic-ed through is a similar way to the mutual information in the proof of
lemma 6.2. If there is no signal λ = 0 then we can only reliable message ε log 2 nats of information (through
the Bernoulli realization of X(ε)). Similarly if we have a infinite signal to noise ratio we can realize the
mutual information as the entropy of XXT minus a vanishing conditional entropy. ¢

Now we can sketch an argument for Proposition 4.2:

Sketch: We then see in the large n limit that we have the correct values for λ = 0 and λ = ∞

Now if we can match the derivative of Ψ and the derivative of 1
nI
(
XXT ;Y (λ) , X (ε)

)
we could formalize

this argument and show proposition 4.2

First we apply the conditional I-MMSE (GSV05) to give use

1

n

∂I
(
XXT ;Y (λ) , X (ε)

)
∂λ

=
1

n2

∑
i<j

E
[
(XiXj − E [XiXj |Y (λ) , X (ε)])

2
]

=
1

4
MMSE (λ, ε, n)

≤ 1

4
MSEAMP (t;λ, ε, n)

(As the AMP estimator can at best achieve the minimum error)

We can not set up the following chain of inequalities (this is why we above showed the limit of Ψ in λ)

13



(1− ε) log 2 = lim
λ→∞

lim inf
n→∞

1

n
(I (X;Y (λ) , X (ε))− I (X;Y (0) , X (ε)))

= lim
λ→∞

lim inf
n→∞

1

4

∫ λ

0

MMSE
(
λ̆, ε, n

)
∂λ̆

≤ lim
λ→∞

lim
t→∞

lim sup
n→∞

1

4

∫ λ

0

MSEAMP

(
t; λ̆, ε, n

)
∂λ̆ (⋆3)

= lim
λ→∞

lim
t→∞

lim sup
n→∞

1

4

∫ λ

0

MSEAMP

(
t; λ̆, ε, n

)
∂λ̆

= lim
λ→∞

lim
t→∞

1

4

∫ λ

0

MSEAMP

(
t; λ̆, ε

)
∂λ̆

= lim
λ→∞

1

4

∫ λ

0

MSEAMP

(
λ̆, ε
)
∂λ̆

= lim
λ→∞

(Ψ (γ∗, λ, ε)−Ψ(γ∗, 0, ε))

= (1− ε) log 2

So we can then see that the inequality in (⋆3) is an equality and as MMSE(λ, ε, n) ≤ MSEAMP (t;λ, ε, n)
for all λ we have

MSEAMP (λ, ε) = lim
n→∞

MMSE(λ, ε, n)

For almost all λ, we can argue through montonicity and continuity to extend this to all λ. So, we can have
(ignoring total formality)

lim
n→∞

1

n

∂I (X;Y (λ) , X (ε))

∂λ
= lim

n→∞

1

n

∂I
(
XXT ;Y (λ) , X (ε)

)
∂λ

= lim
n→∞

1

4
MMSE (λ, ε, n) =MSEAMP (λ, ε)

So Ψ also matches the derivative of limn→∞
1
nI (X;Y (λ) , X (ε)) and its value at λ = 0 so we can conclude:

lim
n→∞

1

n
I (X;Y (λ) , X (ε)) = Ψ(γ∗(λ, ε), λ, ϵ)

¢

2.4 (ε = 0, +)

Now that we have analyzed the more general channel we can use these results to specify to the case that
ϵ = 0 we can easily see that setting ε = 0 gives us our original Ψ in Theorem 1.1. To set the stage for thiis
limit we must show two things

1. I(X;X(ε), Y )/n has a well defined limit. This was proved in proposition 4.2

2. We can show the difference between I(X;X(ε), Y )/n and I(X;Y ) is vanishing when ε→ 0, we can see
this as ∣∣∣∣ 1nI(X;X(ε), Y )− 1

n
I(X;Y )

∣∣∣∣ ≤ 1

n
I(X;X(ε), Y ) ≤ ϵ log 2

Accounting for this we have

lim
n→∞

1

n
I (X;Y ) = lim

ε→0
Ψ(γ∗, λ, ε)

14



We have that Ψ(γ, λ, ε) is continuous in ε and γ and that the unique solution to the ε fixed point equation
γ∗(λ, ε) converges to γ∗(λ). As the function 1 −mmse(γ) is smooth and concave, we know γ∗ satisfies the
equation:

γ = λ(1−mmse(γ))

We then have

lim
n→∞

1

n
I (X;Y ) = Ψ(γ∗ (λ) , λ)

We then must show that

lim
n→∞

1

n
|I(X;G)− 1

n
Ψ(γ∗(λ), λ)| → 0

This was shown in Proposition 4.1

2.5 (Phase Transition)

We consider, again, our single-letter model. We preciously defined

mmse (γ) = E
[
(X0 − E [X0|Y0 (γ)])2

]
Under scalar model, we can simplify the mmse term above. First we have

E [X|Y0] = P (X0 = 1|Y0)− P (X0 = −1|Y0)

=
f
(
Y0 −

√
γ
)
− f

(
Y0 +

√
γ
)

f
(
Y0 −

√
γ
)
+ f

(
Y0 +

√
γ
) (f is the stanard gaussian PDF)

=
eY0

√
γ − e−Y0

√
γ

eY0
√

γ + e−Y0
√
γ

= tanhY0
√
γ

= tanhX0γ + Z0
√
γ

And then we can reduce the mmse to

mmse(γ) = E
[
(X0 − E [X0|Y0 (γ)])2

]
= E

[
X2

0 − 2X0E [X0|Y0 (γ)] + E [X0|Y0 (γ)]2
]

= 1− 2E [X0E [X0|Y0 (γ)]] + E
[
E [X0|Y0 (γ)]2

]
= 1− 2E

[
E [X0|Y0 (γ)]2

]
+ E

[
E [X0|Y0 (γ)]2

]
(By The Tower PRoprty of Cond. Exp)

= 1− E
[
E [X0|Y0 (γ)]2

]
= 1− E

[
tanh (γ +

√
γZ0)

2
]

:= 1−G (γ)

Notice that (⋆1) can be rewritten as the equivalent fixed point equation

γ = λG (γ)

Thus an analysis of G (γ) will reveal the possible solutions to equation (⋆1). We note the following without
proof

1. Utilizing the continuity of tanh we have that G is a continious function
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2. We see that G(0) = E[tanh(0)2] = E[0] = 0

3. As limx→∞ tanhx = 1 we also have that limγ→∞G(γ) = 1

4. we also have that G is monotone increasing and strictly concave on [0,∞) so it will have at most 2
fixed points (one of which is trivially 0)

We also need to analyze the derivative of G with respect to γ we do this as

E

[
∂

∂γ
tanh (γ +

√
γZ)

2

]
= E

[
2 tanh (γ +

√
γZ)

(
1− (tanh (γ +

√
γZ))

2
)(

1 +
1

2
√
γ
Z

)]
= E

[
2 (γ −√

γZ)
(
1− (γ +

√
γZ)

2
)(

1 +
1

2
√
γ
Z

)]
(Taylor Expand)

= E
[
Z2
]

(only term free of γ and has Z of even power)

= 1

Thus we have λG′ (0) = λ, leading us to conclude that a non-zero fixed point will only occur for λ > 1. This
fixed point is trivially larger than the other known fixed point 0 so we define the value of γ∗ as the largest
solution to the fixed point equation.

2.6 (I-MMSE Relation)

Section 7 presents an argument which bounds the difference of Ψ and the MMSE.

First we will find it convenient two rewrite how pn and qn are defined. Once could motivate this form as a
version of Noise ± Signal. We parameterize pn and qn with parameter θ as

pn = p̄n +

√
p̄n (1− p̄n)

n
θ qn = p̄n −

√
p̄n (1− p̄n)

n
θ

We can then formalize the difference between the derivative of the mutual information and the MMSE through
the following lemma (which is proved from results by Measson, Montanari, Richardson, and Urbanke [4]).

Lemma 7.2 Let I(X;G) be the mutual information of the two-group stochastic block models with param-
eters pn = pn(θ) and q = qn(θ). Then∣∣∣∣ 1n ∂I (X;G)

∂θ
− 1

4
MMSEn (θ)

∣∣∣∣ ≤∼ max

(√
θ

np̄n (1− p̄n)
,
1

n

)

We have now formalized the ability to take the derivative of limn→∞
∂
∂θ I(X;G) = 1

4MMSE. We can then
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finish the relationship from Theorem 1.1 to Theorem 1.4 By:

lim
n→∞

∫ λ2

λ1

1

4
MMSE ∂θ = lim

n→∞

∫ λ2

λ1

1

n

∂I (X;G)

∂θ
∂θ (Lemma 7.2)

= Ψ(γ∗ (λ2) , λ2)−Ψ(γ∗ (λ1) , λ1) (Theorem 1.1)

=

∫ λ2

λ1

∂

∂λ
Ψ(γ∗ (λ) , λ) ∂λ (Lemma 6.4)

=

∫ λ2

λ1

(
1−

γ∗
(
λ2
)

λ2

)
∂λ (Lemma 6.3)

=

∫ λ2

λ1

(
1−

γ∗
(
θ2
)

θ2

)
∂θ (Re-Assign Dummy Variable)

Thus we have (through similar arguments as the end of Subsection 2.3)

lim
1

4
MMSE =

(
1−

γ∗
(
θ2
)

θ2

)

3 Discussion

Over all I really enjoyed this paper, I think answers a important question for a very relevant model in
applications. Th SBM is used in many areas (social media political networks always come to mind) and
knowing the fundamental limits of achievability is important. I would like to mention what I believe is the
most innovative aspect of this paper, the impact AMP it leaves on theory. Of course this is hard to judge
as the question answered here is very directly related with one specific model. We can, however, extract an
argument from this paper and compare with a similar argument from around this time.

This paper gives a good introduction to using AMP as a proof mechanism. One of the largest success in
AMP theory is that one can utilize a well thought-out choice for ft and, in many cases, this choice will
provide an easy to analyze algorithm which can achieve the minimum of a estimation metric. This cannot
be understated, I will mention an application whose question seems unconnected but their analysis is almost
identical.3

M-Estimation with large p [5]:

Consider a Model
Y = Xθ0 +W

Where Y is a response vector, X is a design matrix and W is a per index iid noise vector. We can define a
M-estimator through a non-negative Convex Function ρ : R → R≥0

θ̂M = argmin
θ

n∑
i=1

ρ(Yi − ⟨Xi, θ⟩)

We see that choosing ρ(·) = ∂
∂θ log(fW (·))) leads to the MLE estimate. We have from classical statistical

theory that the asymptotic distribution of θ̂ − θ is N(0, V ), where the asymptotic variance V is

V = U(ϕ, FW )(XTX)−1

3Thank you to Zhou Fan, I found out this result through his course
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With U(ϕ, F ) =
∫
ϕ2 ∂F

(
∫
ϕ′ ∂F )2

and ϕ = ρ′. We see that, as expected, using ρ(·) = ∂
∂θ log(fW (·))) elicits

U = 1
nI(θ) . Fascinatingly, if wee consider a large number of both observations and predictions under the

paradigm n, p → ∞, n/p → δ ∈ (1,∞), we see that asymptotic variance above is wrong. We instead have
the following result:

Theorem
Assuming that ρ is strongly convex ans smooth with X being stanrads guassian design with δ > 1 and FW

has finite second moment. Let (τ∗, b∗) be the fixed point equation to the set of equations

τ2 = δE[Ψ(W + τZ; b)2]

1

δ
= E[Ψ′(W + τZ;B)]

Where Ψ(z; b) = ρ′b(x), ρb(z) = minx(bρ(x) +
1
2 (x− z)2) and Z ∼ N(0, 1)

lim
n,p→∞

1

p

p∑
i=1

V [θ̂i]
a.s.
= U(Ψ(·, b∗), FW ⋆ N(0, τ2∗ ))

Giving the asymptotic covariance matrix as

V = U(Ψ(·, b∗), FW ⋆ N(0, τ2∗ ))E[(XTX)−1]

An application of this theorem shows that high-dimensional confidence regions for M-estimators have incor-
rect coverage when using the classical formula for the covariance matrix. One can begin to see the familiarizes
between the SMB result of theorem 1.1 and the above result. Even more striking, the methods for proving
both results have many similarities. They both roughly follow the same outline:

1. Introduce an AMP algorithm for the application

2. Find a fixed point for the state evolution equations

3. Analyze a test function (For example MSE) at the limiting iterate

4. Show the test function is the same for AMP and a given estimator

5. (optional) Use the test function to derive other quantities

Overall, I really enjoyed seeing this argument in action for both papers. In the SBM paper, it was delivered
in a interesting way and It is very clear how using AMP has broader applications.

As for issues that the paper has, I mainly found two parts of the paper to be sub-optimal.

First, I have an issue with the assumptions made in the paper. Even though dense graphs like this paper
assumes do have applications, the most important regime of a fixed average number of vertices is left
out. We argued in the Results section how we can force though a large but bounded degree, often our
data may just not fit this criterion. I turns out that to analyze this case requires much more complicated
machinery. Coja-Oghlan, Krzakala, Perkins, and Zdeborova [6] formalized the use of the cavity method,
a well known statistical-physics method, in the context of the SBM. Then, they are able to elicit a form
for the mutual information. The connection between these papers is tenuous, [6] did not utilize AMP.
There is one connection, however, between these two papers, mainly that the cavity method is commonly
associated through belief propagation and the AMP can be derived from belief propagation. Current research
investigates this connection though the relation between AMP and the Cavity method, of which there are
some interesting results.
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Second, I didn’t really enjoy the section on showing the mutual information bounds between X;G and X;Y ,
I found it to be overly challenging to understand. This is mainly due to the number of inequalities and
approximations which are needed to formalize the result4. I have tried to present the major connections that
I saw throughout the paper but I would have appreciated if the authors gave a more high-level explanation
of why the result holds, then leave all the gritty details in the appendix.
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