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n participants, m questions.

Warner’s additive model outputs the matrix,

P1 P2 . . . Pm−1 Pm
Q1 0.12 -1.05 . . . -0.43 0.27

Q2 -0.78 0.46 . . . 0.55 -0.31

... ... ... . . . ... ...
Qm−1 -0.24 0.89 . . . 0.07 -0.19

Qm 0.45 -0.67 . . . 0.78 0.11

Question vector Q and response vector P .



Adding structure to the signal!

Let P = µ ∈ {−1, 0, 1}n with ∥µ∥0 = k .

▶ ±1 are two differing perspectives.

▶ 0 is a “moderate” or “ambivalent”
perspective with respect to ±1



Which Q ∈ Rn vector to consider?
Q = 1 is equivalent to:

“Do you agree with perspective 1?”

“1’s” → 1, “−1’s” → −1 and “0’s” → 0



Question vector = 1,

Response vector = µ,

Warner’s model becomes,

Y = λ
1µ⊤

n1/2k1/2
+ G



Question vector = 1,

Response vector = µ,

Warner’s model becomes,

Y = λ︸︷︷︸
SNR

1µ⊤

k1/2n1/2︸ ︷︷ ︸
Rescaled Signal

+ G︸︷︷︸
Warner’s

Additive Noise

,

∥µ∥0 = k and Gi ,j ∼ N (0, 1)



Instead of 1, consider q ∈ {−1, 0, 1}m
(possible random) with ∥q∥0 = ℓ.

Warner’s matrix Y = Yi ,j = qiµj .

Re-normalizing,

Y = λ
qµ⊤

ℓ1/2k1/2
+ G



Let i ∈ [m] and j ∈ [n].

qi ̸= µj ̸= 0 gives Yi ,j =
λ√
ℓk
+ Gi ,j .

qi = µj ̸= 0 gives Yi ,j =
−λ√
ℓk
+ Gi ,j .

qi = 0 or µj = 0 gives Yi ,j = Gi ,j .



Y = λ
qµ⊤

ℓ1/2k1/2
+ G

(m = n) ↓ (?)

Y = λ
µµ⊤

k1/2k1/2
+ G

↓ (tensor)

Y = λ
µ⊗r

k r/2
+ G



In what follows, λ large allows exact recover
of µ from Warner’s matrix.

Why is this problematic in RRT?



We turn to the model,

Y = λ
µ⊗r

k r/2
+ G ,

Y ∈ Rn⊗r
, λn ≥ 0, Gi1,...,ir ∼ N (0, 1),

µ ∈ {−1, 0, 1}n and ∥µ∥0 = k



▶ Many applications: tensor PCA,
compressed sensing, community detection.

▶ More Importantly, in this model
exhibits a stat-comp-local gap.



First, we look at STAT.

Question?

Let ν be uniform over
{v ∈ {−1, 0, 1}n : ∥v∥0 = k} be the prior.

What is the optimal (in terms of exact
recovery) statistical estimator of µ.



Maximum a posteriori, i.e.

µ̂ = argmaxµ′∈µ⟨Y , (µ′)⊗r⟩.



A Stat-Comp gaps occur when the Bayes
estimator requires SNR λ but the best
known “poly-time” algorithm requires SNR
λ′ = ω(λ).

For our problem of focus,

optSTAT(λ) = Θ(
√
kp-log(n))

and

optCOMP(λ) = Θ((k r/2 ∧ nr/4)p-log(n)).



A Stat-Comp gaps occur when the Bayes
estimator requires SNR λ but the best
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A Comp-Local gap occurs when the best
known (non-“local”) poly-time algorithm
requires SNR λ′, but there is evidence that a
“local” poly-time algorithm requires
λ̃ = ω(λ′).

Recalling the previous slide,

optCOMP(λ) = (k r/2 ∧ nr/4)p-log(n)

and

optLOCAL = (n(r−2)/2)p-log(n).



A Comp-Local gap occurs when the best
known (non-“local”) poly-time algorithm
requires SNR λ′, but there is evidence that a
“local” poly-time algorithm requires
λ̃ = ω(λ′).

Recalling the previous slide,

optCOMP(λ) = (k r/2 ∧ nr/4)p-log(n)

and

optLOCAL = (n(r−2)/2)p-log(n).



If k ≥
√
n,

λ
1 k1/2 nr/4 n(r−2)/2

Impossible Hard Easy (non-local) Easy (local)

If k <
√
n,

λ
0 k1/2 k r/2

Impossible Hard Easy



Generating correlated noise,



Randomized Greedy with random thresholds,

of the above algorithm with input M

0

Above H r+1
2 ,γ(S) = ⟨S ,Y ⟩ − γ∥S∥

r+1
2

0 .



For simplicity, λ = Ω(
√
kn(r−1)/4).



(1) Justify the following heuristic: If

cos(µ, S1)
r−1 ≥

√
k
λ p-log(n), then our

algorithm recovers µ.

(2) Find an initialization where
cos(µ, S1) = n−1/4.

(3) By rearranging the inequality in (1), we

then have λ ≥
√
kn

r−1
4 p-log(n), as desired.



Parameterize the Hamming distance one
transition by choosing a coordinate pt of St
to change to qt ̸= St.

Marginally,
Hr+1

2 ,γ
(S ′)−Hr+1

2 ,γ
(St ) ≈

(qt−(St )pt )µpt
λ

kr/2
⟨θ,St ⟩r−1+⟨St ,G ⟩−(|qt |−|Stpt |)γ∥S

t∥(r−1)/2
0

= λ√
k
(qt−(St )pt )µpt cos(St ,θ)

r−1−(|qt |−|Stpt |)γ+Zt

So why not bound Zt and do case work?



Why can’t you simply bound Zt?

▶ First, the random variables Zt and Zt ′ are
correlated as St is close to St ′.

▶ Second, we have to bound Zt over all
possible paths of this walk. If we have
made n transitions, this set of possible
paths grow exponentially.



Alternately, we could use sub-set Gaussian
cloning to establish λ ≥

√
kn

r−1
4 p-log(n).



Intuition

▶ Many algorithms reuse noise matrix G ,
causing correlations between steps.

▶ To avoid the complexity, we could
assume: Ỹt =

λ
k r/2

θ⊗r + G̃t with

G̃t ∼ N (0, ·), for each step t.

▶ Solution: design an algorithm that
simulates fresh-noise behavior.



Spot the step which simulates fresh noise?

of the above algorithm with input M



General setup

▶ Model: Yi = µ∗
i + Zi , with Zi ∼ N (0, 1).

▶ Input: subsets ∆t ⊆ [N ], and a total
number of draws M .

▶ Goal: output X∆t
∼ µ∗

∆t
+N (0,M · I ),

independently across t.



Input: Y ∈ RN , subsets ∆t, usage cap M .

1. For each i ∈ [N ], sample
G 1
i , . . . ,G

M
i ∼ N (0,M).

2. Compute Ḡi =
1
M

∑M
j=1 G

j
i .

3. Initialize b0i = 0, track how many times i
is used.



4. At step t:

For each i ∈ ∆t, set bti = bt−1
i + 1

Otherwise, set bti = bt−1
i

X∆t
= Y∆t

+
(
G bt

∆t
− Ḡ∆t

)
5. Stop when any element is used > M

times (i.e. we can’t inject any more fresh
noise). Denote this time as TM .



Theorem: For all t ∈ [TM ],

X∆t

d
= µ∗

∆t
+ Z ′

∆t
, Z ′

∆t
∼ N (0,MId|∆t |)

▶ Each X∆t
is independent of the others.

▶ Outputs simulate fresh Gaussian noise
across steps.

▶ Cost: variance of noise is inflated by M .



λ
√
k(qt−(St )pt )µpt cos(St ,θ)

r−1−(|qt |−|Stpt |)γ+Z ′t≥0

Standard asymptotic theory gives
maxt |Z ′

t | ≤ 2
√

M log(n) wp 1− o(1),

λ
√
k(qt−(St )pt )µpt cos(St ,θ)

r−1≥±2
√

M log(n)+γ(|qt |−|Stpt |).

≡(qt−(St )pt )µpt cos(St ,θ)
r−1≥

√
k
λ (±2

√
M log(n)+γ(|qt |−|Stpt |)).

We then can rigorously prove condition:

cos(St ,θ)
r−1≥

√
k
λ p-log(n).





▶ Rigorous analysis of iterative algorithms.

▶ Variance inflation is mild under
M = p-log(n).

▶ Takeaway: Subset Gaussian Cloning
bridges algorithm design and clean
probabilistic models.



▶ Non-Gaussian

▶ More general algorithms

▶ A more convenient noising scheme




