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n participants, m questions.

Warner's additive model outputs the matrix,

Pr P, ... Ph_1 P,

Ql 012 -1.05 ... 043 027
Q2 078 046 ... 055  -0.31
Qm—l 024 089 ... 007  -0.19
Qm 045 -067 ... 0.78 0.11

Question vector  and response vector P.



Adding structure to the signal!

Let P=p € {—1,0,1}" with ||ullo = k.

» +1 are two differing perspectives.

» 0 is a “moderate” or “ambivalent”
perspective with respect to +1



Which @ € R" vector to consider?
Q@ = 1 is equivalent to:

“Do you agree with perspective 17"

“1s" =1, "=1's" —+ —1and “0's" — 0



Question vector = 1,
Response vector = i,

Warner's model becomes,
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Question vector = 1,
Response vector = L,

Warner's model becomes,

Y =_\ I’LLT G
e T
SNR N Warner's

Rescaled Signal Additive Noise

HM”O — k and G,',j ~ _/\/(O7 ]_)



Instead of 1, consider g € {—1,0,1}"
(possible random) with ||g||o = 7.

Warner's matrix Y = Y;; = qip;.

Re-normalizing,

-
qu
Y = )‘gl/zkl/z +G




Let i € [m] and j € [n].

qi 7# 1j 7 0 gives Y;; = ﬁ + G,

qi = 1 7 0 gives Yij = 72 + Gij.
gi = 0 or pij = 0 gives Y;; = Gjj.
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In what follows, A large allows exact recover
of 1 from Warner's matrix.

Why is this problematic in RRT?



We turn to the model,

u®
Y = Ak/z + G,

YR, N\, >0, G, ;i ~N(0,1),

.....

p€{=1,0,1}"and |ullo = k



» Many applications: tensor PCA,
compressed sensing, community detection.

» More Importantly, in this model
exhibits a stat-comp-local gap.



First, we look at STAT.
Question?
Let  be uniform over

{ve{-1,0,1}": ||v|lo = k} be the prior.

What is the optimal (in terms of exact
recovery) statistical estimator of L.



Maximum a posteriori, i.e.

fi = arg max,s, (Y, (1)),



A Stat-Comp gaps occur when the Bayes
estimator requires SNR A but the best
known “poly-time” algorithm requires SNR

N = w()).



A Stat-Comp gaps occur when the Bayes
estimator requires SNR A but the best
known “poly-time” algorithm requires SNR

N =w(N).
For our problem of focus,

optsrar(A) = O(Vkp-log(n))

and
opteonp(A) = O((k"2 A n"*)p-log(n)).



A Comp-Local gap occurs when the best
known (non-“local”") poly-time algorithm
requires SNR )\, but there is evidence that a
“local” poly-time algorithm requires

A =w(N).



A Comp-Local gap occurs when the best
known (non-“local”") poly-time algorithm
requires SNR )\, but there is evidence that a
“local” poly-time algorithm requires

A =w(N).

Recalling the previous slide,

optcomp(A) = (kK2 A n"/*)p-log(n)
and

optrocar = (nt"~?/%)p-log(n).



If k > /.

. - .—

Easy (local
1/2 r/4 r—2)/
k n

If k < /n,

. - .

k1/2 kr/2




Generating correlated noise,
Require: M € N

1: fori =1ton do

2:  Sample Gl .,GMiid. from N(0, M).

G,(——ZG”

4: fnrt—ltono
5: Zj’f — G; - G,‘.
6 end for

7: end for

8: return ((Zﬁ)fe[n],tE[M])

g



Randomized Greedy with random thresholds,
Require: Y € R"”, S5 € {-1,0,1}",y 2 0,M € N
1: t « Oandt; « O foreachi € [n].
Let ((Z:)ie[n],te[M]) be the output of the above algorithm with input M
while t < M do
Let N(S;) = {0’ € {-1,0,1}" | dy(S;,0") = 1}
Choose a random element ¢’ € N(S;) uniformly
Let i € [n] be such that o’ # (S;);.
ti—ti+1,te—t+1
if Hrpo o (0%) = Hegr o (1) >
Sts1 0’
end if
: end while
12: return Syr41

L

e
=

Above Hex (S) = (S, Y) —~|S]lo

2



For simplicity, A = Q(+v/kn("=1)/4).



(1) Justify the following heuristic: If
cos(u, 51) 1 > \/—p log(n), then our
algorithm recovers L.

(2) Find an initialization where

cos(y1, S1) = n~1/4

(3) By rearranging the inequality in (1), we
then have A > vkn'# p-log(n), as desired.



Parameterize the Hamming distance one
transition by choosing a coordinate p; of S;

to change to g; # S;.
Marginally,
N— ~
Hriq 7(5) H%’W(St)

(at=(Se)pepe 2y 0.5 L+(5.6)~(atl-I55, Doty )2

= (@ =(St)pe)npt cos(St0) "~ (lael ~ISp 1+ Ze

So why not bound Z; and do case work?



Why can't you simply bound Z;?

» First, the random variables Z; and Z; are
correlated as S; is close to Sy.

» Second, we have to bound Z; over all
possible paths of this walk. If we have
made n transitions, this set of possible
paths grow exponentially.



Alternately, we could use sub- set Gaussian
cloning to establish A\ > v/kn'# p-log(n).



Intuition

» Many algorithms reuse noise matrix G,
causing correlations between steps.

» To avoid the compIeX|ty, we could
assume: Y; = k,/29®’ + G, with

G: ~ N(0,-), for each step t.

» Solution: design an algorithm that
simulates fresh-noise behavior.



Spot the step which simulates fresh noise?

Require: Y € R, Sy € {-1,0,1}",y > 0,M e N
1: t « Oand t; « O foreachi € [n].
2: Let ((Z:)ie[n],te[M]) be the output of the above algorithm with input M
3: whilet < M do

4:  Let N(S;) ={0" € {-1,0,1}" | du(S:,0") = 1}

5:  Choose a random element ¢’ € N(S;) uniformly

6:  Leti € [n] be such that o/ # (S;);.

7: tie—ti+1,te—t+1

8 if Hrst o (0') = Hest o (S1) > [I(0)®" - (8:)®"||rZ! then
9: St+1 — 0o

10: endif

11: end while

12: return Sys41



General setup
» Model: Y, = ,LLT + Z;, with Z; ~ N(O, ].)

» Input: subsets A; C [N], and a total
number of draws M.

> Goal: output Xa, ~ pjx, +N(0,M-1),
independently across t.



Input: Y € R" subsets A;, usage cap M.

1. For each i € [N], sample
Gl,...,GM ~ N(0, M).

2. Compute G; = = ZJAil G,J

3. Initialize b = 0, track how many times |
is used.



4. At step t:
For each i € A, set bf = b1 +1

Otherwise, set b’ = bf_l
Xa, = Ya, + (Ggi _ G_At)

5. Stop when any element is used > M
times (i.e. we can't inject any more fresh
noise). Denote this time as Ty.



Theorem: For all t € [Ty],

Xn, L un +2Zn, Zy, ~N(0,Midja,)

» Each Xj, is independent of the others.

» Outputs simulate fresh Gaussian noise
across steps.

» Cost: variance of noise is inflated by M.



MWk(qt—(St)peps cos(S.0) L~ (lat|—|Sh, [)v+2{>0

Standard asymptotic theory gives
max; |Z/| < 24/ Mlog(n) wp 1 — o(1),
Mk(qe—(St)pg )1y cos(Se.0) ~1>£2y/M log(n)+(lat| ISk, |)-

=(at~(St)pg Jnpe cos(5t.6)" 1= Y (£2/Miog(n) +1(Iat |- IF, ).

We then can rigorously prove condition:

cos(St,0) >+ p-log(n).
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Figure 3: Randomized greedy for Sparse 3-Tensor PCA
when 6 € {—1,0, 1}". Mean absolute angle vs time for
A = n*, initialized at a uniform random trinary vector.
We predict that & = 1.4 is the threshold for fast
recovery. Here # = 150, k = 56 ~ 1%, and y =log#.
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Figure 5: Two-stage algorithm for sparse 3-tensor PCA
when 6 € {-1,0,1}". Mean absolute angle vs. time for
A = 19, initialised at Syop. We predict that a = 0.75 is
the threshold for fast recovery. Here n = 150,
k=56~n" andy =logn.
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Figure 4: Randomized greedy for Sparse 3-Tensor PCA
when @ € {-1,0, 1}". Mean absolute angle vs time for
A = n®, initialized at Syom. We predict that a = 0.9 is
the threshold for fast recovery. Here n = 150,
k=56~n"3 andy = logn.
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Figure 6: Stage one of the two-stage algorithm for
sparse 3-tensor PCA when 6 € {-1,0, 1}"". Absolute
angle vs. time for A = ©(123/4), initialised at Spoy.
Here n = 150, k = 116 ~ n°%, and we plot 29
simulations (filtered from 400 total simulations) which
exhibit the most visible oscillatory phase. The dashed
black line (where | cos(S;, )| ~ .502) is a prediction for
‘when this stage transitions from an oscillatory phase
(below the line) to a monotonically increasing phase
(above the line). Color is only used for visual clarity.



» Rigorous analysis of iterative algorithms.

» Variance inflation is mild under
M = p-log(n).

» Takeaway: Subset Gaussian Cloning
bridges algorithm design and clean
probabilistic models.



» Non-Gaussian
» More general algorithms

» A more convenient noising scheme






