

Ilias Zadik

Conor Sheehan

Kostas Tsirkas

n participants, *m* questions.

Warner's additive model outputs the matrix,

	P_1	P_2		P_{m-1}	P_{m}
Q_1	0.12	-1.05		-0.43	0.27
Q_2	-0.78	0.46		0.55	-0.31
:	ŧ	:	٠	÷	÷
Q_{m-1}	-0.24	0.89		-0.43 0.55 : 0.07 0.78	-0.19
Q_m	0.45	-0.67		0.78	0.11

Question vector Q and response vector P.

Adding structure to the signal!

Let $P = \mu \in \{-1, 0, 1\}^n$ with $\|\mu\|_0 = k$.

- $\mu \in [-1,0,1] \text{ with } \|\mu\|_{0} = K.$
- \blacktriangleright 0 is a "moderate" or "ambivalent" perspective with respect to ± 1

 \blacktriangleright ±1 are two differing perspectives.

Which $Q \in \mathbb{R}^n$ vector to consider?

 $Q = \mathbf{1}$ is equivalent to:

"Do you agree with perspective 1?"

"1's" \rightarrow 1, "-1's" \rightarrow -1 and "0's" \rightarrow 0

Question vector = 1,

 ${\sf Response \ vector} = \mu,$

Warner's model becomes,

$$Y = \lambda rac{\mathbf{1} \mu^ op}{\mathbf{n}^{1/2} \mathbf{k}^{1/2}} + G$$

Question vector = 1,

 ${\sf Response \ vector} = \mu,$

Warner's model becomes,

$$Y = \underbrace{\lambda}_{\text{SNR}} \underbrace{\frac{\mathbf{L}\mu}{\mathbf{k}^{1/2} \mathbf{n}^{1/2}}}_{\text{Rescaled Signal}} + \underbrace{\mathcal{G}}_{\text{Warner's Additive Noise}},$$

 $\|\mu\|_0 = k$ and $G_{i,j} \sim \mathcal{N}(0,1)$

Instead of **1**, consider $q \in \{-1, 0, 1\}^m$ (possible random) with $||q||_0 = \ell$.

Warner's matrix $Y = Y_{i,j} = q_i \mu_i$.

 $Y = \lambda \frac{q\mu'}{\ell^{1/2} \mu^{1/2}} + G$

Re-normalizing,

Let
$$i \in [m]$$
 and $j \in [n]$

Let $i \in [m]$ and $j \in [n]$.

 $q_i \neq \mu_j \neq 0$ gives $Y_{i,j} = \frac{\lambda}{\sqrt{\ell k}} + G_{i,j}$.

 $q_i = \mu_j \neq 0$ gives $Y_{i,j} = \frac{-\lambda}{\sqrt{\ell k}} + G_{i,j}$.

 $q_i = 0$ or $\mu_i = 0$ gives $Y_{i,i} = G_{i,i}$.

$$Y = \lambda rac{q \mu^{ op}}{\ell^{1/2} k^{1/2}} + G$$
 $(m = n) \qquad \downarrow \qquad (?)$
 $Y = \lambda rac{\mu \mu^{ op}}{k^{1/2} k^{1/2}} + G$
 $\downarrow \qquad (tensor)$

 $Y = \lambda \frac{\mu^{\otimes r}}{\nu^{r/2}} + G$

In what follows, λ large allows exact recover of μ from Warner's matrix. Why is this problematic in RRT?

We turn to the model.

$$Y\in\mathbb{R}^{n^{\otimes r}}$$
, $\lambda_n\geq 0$, $G_{i_1,...,i_r}\sim \mathcal{N}(0,1)$, $\mu\in\{-1,0,1\}^n$ and $\|\mu\|_0=k$

 $Y = \lambda \frac{\mu^{\otimes r}}{4r/2} + G,$

► Many applications: tensor PCA, compressed sensing, community detection.

► More Importantly, in this model exhibits a stat-comp-local gap.

First, we look at STAT.

Question?

Let ν be uniform over $\{v \in \{-1, 0, 1\}^n : \|v\|_0 = k\}$ be the prior.

What is the optimal (in terms of exact recovery) statistical estimator of μ .

Maximum a posteriori, i.e.

$$\hat{\mu} = \operatorname{arg\,max}_{\mu' \in \mu} \langle Y, (\mu')^{\otimes r} \rangle.$$

A Stat-Comp gaps occur when the Bayes estimator requires SNR λ but the best known "poly-time" algorithm requires SNR

known "poly-time" algorithm requires SNR $\lambda' = \omega(\lambda)$.

A Stat-Comp gaps occur when the Bayes estimator requires SNR λ but the best known "poly-time" algorithm requires SNR $\lambda' = \omega(\lambda)$.

For our problem of focus,

$$\operatorname{opt}_{\operatorname{STAT}}(\lambda) = \Theta(\sqrt{k}\operatorname{p-log}(n))$$
 and $\operatorname{opt}_{\operatorname{COMP}}(\lambda) = \Theta((k^{r/2} \wedge n^{r/4})\operatorname{p-log}(n)).$

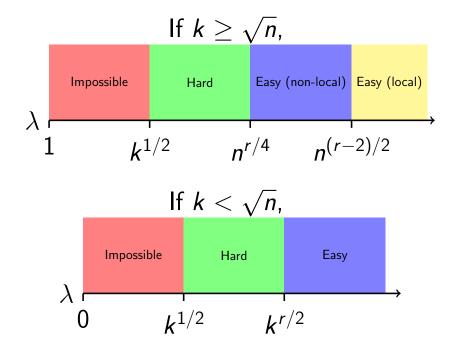
A Comp-Local gap occurs when the best known (non-"local") poly-time algorithm requires SNR λ' , but there is evidence that a "local" poly-time algorithm requires $\tilde{\lambda} = \omega(\lambda')$.

A Comp-Local gap occurs when the best known (non-"local") poly-time algorithm requires SNR λ' , but there is evidence that a "local" poly-time algorithm requires $\tilde{\lambda} = \omega(\lambda')$.

Recalling the previous slide,
$$\operatorname{opt_{COMP}}(\lambda) = (k^{r/2} \wedge n^{r/4}) \operatorname{p-log}(n)$$
 and

Recalling the previous slide,

 $\operatorname{opt}_{LOCAL} = (n^{(r-2)/2}) \operatorname{p-log}(n).$



Generating correlated noise,

Require: $M \in \mathbb{N}$

3: $\bar{G}_i \leftarrow \frac{1}{M} \sum_{i=1}^M G_i^j$.

4: **for** t = 1 to M **do** 5: $Z_{i,t} \leftarrow G_i^t - \bar{G}_i$.

8: **return** $((Z_i^t)_{i \in [n], t \in [M]})$

end for

7: end for

1: **for** i = 1 to n **do**

2: Sample G_i^1, \ldots, G_i^M i.i.d. from $\mathcal{N}(0, M)$.

Randomized Greedy with random thresholds,

```
Require: Y \in \mathbb{R}^{n^{\otimes r}}, S_0 \in \{-1, 0, 1\}^n, \gamma \ge 0, M \in \mathbb{N}
  1: t \leftarrow 0 and t_i \leftarrow 0 for each i \in [n].
  2: Let ((Z_i^t)_{i \in [n], t \in [M]}) be the output of the above algorithm with input M
  3: while t \leq M do
         Let \mathcal{N}(S_t) = \{ \sigma' \in \{-1, 0, 1\}^n \mid d_H(S_t, \sigma') = 1 \}
         Choose a random element \sigma' \in \mathcal{N}(S_t) uniformly
  5:
  6: Let i \in [n] be such that \sigma'_i \neq (S_t)_i.
  7: t_i \leftarrow t_i + 1, t \leftarrow t + 1
         if H_{\frac{r+1}{2},\gamma}(\sigma') - H_{\frac{r+1}{2},\gamma}(S_t) > 0
  8:
             S_{t+1} \leftarrow \sigma'
  9:
          end if
 10:
 11: end while
 12: return S_{M+1}
```

Above
$$H_{\frac{r+1}{2},\gamma}(S) = \langle S, Y \rangle - \gamma ||S||_0^{\frac{r+1}{2}}$$
.

For simplicity, $\lambda = \Omega(\sqrt{k} n^{(r-1)/4})$.

- (1) Justify the following heuristic: If $\cos(\mu, S_1)^{r-1} \ge \frac{\sqrt{k}}{\lambda} \text{p-log}(n)$, then our
- $cos(\mu, S_1)^{n-1} \ge \frac{\sqrt{n}}{\lambda} p \log(n)$, then our algorithm recovers μ .
- (2) Find an initialization where $cos(\mu, S_1) = n^{-1/4}$.
- (3) By rearranging the inequality in (1), we then have $\lambda \geq \sqrt{k} n^{\frac{r-1}{4}} \text{p-log}(n)$, as desired.

Parameterize the Hamming distance one transition by choosing a coordinate p_t of S_t to change to $q_t \neq S_t$.

Marginally,

$$\begin{split} H_{\frac{r+1}{2},\gamma}(S') - H_{\frac{r+1}{2},\gamma}(S_t) &\approx \\ (q_t - (S_t)_{p_t}) \mu_{p_t} \frac{\lambda}{k^{r/2}} \langle \theta, S_t \rangle^{r-1} + \langle S_t, G \rangle - (|q_t| - |S_{p_t}^t|) \gamma \|S^t\|_0^{(r-1)/2} \\ &= \frac{\lambda}{\sqrt{k}} (q_t - (S_t)_{p_t}) \mu_{p_t} \cos(S_t, \theta)^{r-1} - (|q_t| - |S_{p_t}^t|) \gamma + Z_t \end{split}$$

So why not bound Z_t and do case work?

Why can't you simply bound Z_t ?

- ▶ First, the random variables Z_t and $Z_{t'}$ are correlated as S_t is close to $S_{t'}$.
- Second, we have to bound Z_t over all possible paths of this walk. If we have made n transitions, this set of possible paths grow exponentially.

Alternately, we could use sub-set Gaussian

cloning to establish $\lambda \geq \sqrt{k} n^{\frac{r-1}{4}} \operatorname{p-log}(n)$.

Intuition

- ► Many algorithms reuse noise matrix *G*, causing correlations between steps.
- ► To avoid the complexity, we could assume: $\tilde{Y}_t = \frac{\lambda}{k^{r/2}} \theta^{\otimes r} + \tilde{G}_t$ with $\tilde{G}_t \sim \mathcal{N}(0,\cdot)$, for each step t.
- ➤ Solution: design an algorithm that simulates fresh-noise behavior.

Spot the step which simulates fresh noise?

```
Require: Y \in \mathbb{R}^{n^{\otimes r}}, S_0 \in \{-1, 0, 1\}^n, \gamma \ge 0, M \in \mathbb{N}
  1: t \leftarrow 0 and t_i \leftarrow 0 for each i \in [n].
  2: Let ((Z_i^t)_{i \in [n], t \in [M]}) be the output of the above algorithm with input M
  3: while t \leq M do
         Let \mathcal{N}(S_t) = \{ \sigma' \in \{-1, 0, 1\}^n \mid d_H(S_t, \sigma') = 1 \}
          Choose a random element \sigma' \in \mathcal{N}(S_t) uniformly
  5:
  6: Let i \in [n] be such that \sigma'_i \neq (S_t)_i.
  7: t_i \leftarrow t_i + 1, t \leftarrow t + 1
        if H_{\frac{r+1}{2},\gamma}(\sigma') - H_{\frac{r+1}{2},\gamma}(S_t) > \|(\sigma')^{\otimes r} - (S_t)^{\otimes r}\|_F Z_i^{t_i} then
  8:
             S_{t+1} \leftarrow \sigma'
  9:
          end if
 10:
 11: end while
 12: return S_{M+1}
```

General setup

▶ Model:
$$Y_i = \mu_i^* + Z_i$$
, with $Z_i \sim \mathcal{N}(0,1)$.

- ▶ Input: subsets $\Delta_t \subseteq [N]$, and a total number of draws M.
- ► Goal: output $X_{\Delta_t} \sim \mu_{\Delta_t}^* + \mathcal{N}(0, M \cdot I)$, independently across t.

Input: $Y \in \mathbb{R}^N$, subsets Δ_t , usage cap M.

- 1. For each $i \in [N]$, sample $G_i^1, \ldots, G_i^M \sim \mathcal{N}(0, M)$.
- $G_i,\ldots,G_i \sim \mathcal{N}(0,N)$
- 2. Compute $\bar{G}_i = \frac{1}{M} \sum_{j=1}^{M} G_i^j$.
- 3. Initialize $b_i^0 = 0$, track how many times i is used.

4. At step *t*:

 $X_{\Delta_t} = Y_{\Delta_t} + \left(G_{\Delta_t}^{b^t} - \bar{G}_{\Delta_t}\right)$ 5. Stop when any element is used > Mtimes (i.e. we can't inject any more fresh

noise). Denote this time as T_M .

For each $i \in \Delta_t$, set $b_i^t = b_i^{t-1} + 1$

Otherwise, set $b_i^t = b_i^{t-1}$

Theorem: For all $t \in [T_M]$,

$$X_{\Delta_t} \stackrel{d}{=} \mu_{\Delta_t}^* + Z_{\Delta_t}', \quad Z_{\Delta_t}' \sim \mathcal{N}(0, M \mathrm{Id}_{|\Delta_t|})$$

- ▶ Each X_{Δ_t} is independent of the others.
- Outputs simulate fresh Gaussian noise across steps.
- ightharpoonup Cost: variance of noise is inflated by M.

$$\lambda \sqrt{k} (q_t - (S_t)p_t)\mu_{p_t} \cos(S_t, \theta)^{r-1} - (|q_t| - |S_{p_t}^t|)\gamma + Z_t' \ge 0$$

Standard asymptotic theory gives $\max_t |Z_t'| \leq 2\sqrt{M\log(n)}$ wp 1 - o(1),

$$\lambda \sqrt{k} (q_t - (S_t)p_t) \mu_{p_t} \cos(S_t, \theta)^{r-1} \ge \pm 2\sqrt{M \log(n)} + \gamma(|q_t| - |S_{p_t}^t|).$$

$$\equiv (q_t - (S_t)p_t) \mu_{p_t} \cos(S_t, \theta)^{r-1} \ge \frac{\sqrt{k}}{\lambda} \left(\pm 2\sqrt{M \log(n)} + \gamma(|q_t| - |S_{p_t}^t|) \right).$$

We then can rigorously prove condition:

$$\cos(S_t,\theta)^{r-1} \ge \frac{\sqrt{k}}{\lambda} \operatorname{p-log}(n).$$

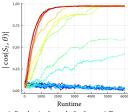


Figure 3: Randomized greedy for Sparse 3-Tensor PCA when $\theta \in \{-1, 0, 1\}^n$. Mean absolute angle vs time for $\lambda = n^\alpha$, initialized at a uniform random trinary vector. We predict that $\alpha = 1.4$ is the threshold for fast recovery. Here n = 150, $k = 56 \approx n^{0.8}$, and $\gamma = \log n$.

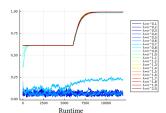


Figure 5: Two-stage algorithm for sparse 3-tensor PCA when $\theta \in \{-1,0,1\}^n$. Mean absolute angle vs. time for $\lambda = n^\alpha$, initialised at S_{HOM} . We predict that $\alpha = 0.75$ is the threshold for fast recovery. Here n = 150, $k = 56 \approx n^{0.8}$, and $\gamma = \log n$.

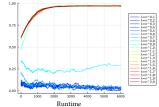


Figure 4: Randomized greedy for Sparse 3-Tensor PCA when $\theta \in \{-1, 0, 1\}^n$. Mean absolute angle vs time for $\lambda = n^a$, initialized at S_{HOM} . We predict that $\alpha = 0.9$ is the threshold for fast recovery. Here n = 150,

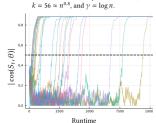


Figure 6: Stage one of the two-stage algorithm for sparse 3-tensor PCA when $\theta \in \{-1,0,1\}^n$. Absolute angle vs. time for $\lambda = \Theta(n^{3/4})$, initialised at S_{HOM} . Here n = 150, $k = 116 \approx n^{0.95}$, and we plot 29 simulations (filtered from 400 total simulations) which exhibit the most visible oscillatory phase. The dashed black line (where $|\cos(k_f, \theta)| \approx .502$) is a prediction for when this stage transitions from an oscillatory phase (below the line) to a monotonically increasing phase (above the line). Color is only used for visual clarity.

- ► Rigorous analysis of iterative algorithms.
- ► Variance inflation is mild under $M = p-\log(n)$.
- ► Takeaway: Subset Gaussian Cloning bridges algorithm design and clean probabilistic models.

- ► Non-Gaussian
- ► More general algorithms
- ► A more convenient noising scheme

