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Introduction

» As we begin to analyze more complex structures, we find
ourselves faced with new issues to address.

» First, we must find methods which can relax statistical
assumptions which might not be valid.

» Second, we must create methods which are easily
applicable to complex non-linear models.
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» Shafer and Vovk introduced the conformal statistical
framework [3].

Conformal Predictions

» Instead of assuming all observations are drawn
2y, In S fz(z), Conformal Predictions assumes
exchangeability.

Meaning, the N! possible orderings of our observations are
equally likely. Written formally, with Q as a set of all possible
permutation of our observations

Vwi,ws € Q,

fzwm)v” 1oy (N) (Zw1(1)’ T 7zw1(/\/)) = me2(1)7'” 1Ziog(N) (Zw2(1)7 T ’sz(N))
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» With this we can implement Conformal Classification Haneltora
Prediction.

» This requires a set of labelled observations Gonformal Predictions
Z=2zy-,Zn= (X1, 1), -, (Xn, ¥n), Where x; € R" is our

observation and label y; € Y.

» We also require a measurable function which takes in a
set Z and single labeled observation Zz and returns a score
which denotes the “non-conformity" of observation Z.

Written formally, when #Z = u and #% = v
AR xR —R

A(Z,%)+ = a more non-conformal occurrence of Z
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» |t is common to compare the non-conformity of a single z; The Agortim
to the other observations in Z, in this case we write
A(Z \ Zj, Z,').

» When this is done for each z; we create a distribution of
non-conformity scores which we can compare the score of
an observation-label pairing in the future.

With a set of labelled observations Z, conformal measure A,
possible label set Y, desired level of error ¢ and unlabelled
observation x, .1, we present the Conformal Prediction
algorithm to construct prediction set I'4:
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Algorithm 1: Conformal Prediction Alogorithm
Data: Z = {215' o 7Zn} - {(X17y1)7' o ,(Xn,yn)}

Result: 14 o Aorm
forzic Zdo
‘ o <— A(Z \ Zj, Z,')
end
for y; € Y do
Zni1 < (Xns1, Vi)
Qpit < A(Z_a Zni1)
py #{/—1,~-,Z+s.1t.a,2an+1}
if py > ¢ then
| yier?
end
end
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» |t is hard to decided a-priori what a good measure of
non-conformity is, this is why we rely on the use of simple oamest et bor easure
functions.

» One such simple function is the nearest-neighbor measure
(NN) proposed by Vovk [3].

» With x € Z, denoting the set of observations from Z with
label y;, with norm || - ||, we have

minery, []x — x*||

ANN(Z\Z, z)= ANN(Z7 (x*,y1) =

minxezn [|x — x*||
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» Papadopolous discussed the advantages of allotting
differing constants o which regulate how hard a label y is
to predict.
» We assign the difficulty to predict the label y as o,. Normalzation
Where, as o), 1 the value is considered easier to predict.
This leads to the generic normalized non-conformity
function introduced by Papopdopolous [2],

AZ,(x".¥)) 2

9y
AMNZ,z) = AN(Z,(x*, 1)) = S A(Z, (X", 1)) (3)
- {s‘o if y=(1,0)
Sy =

A*(Z/ Z) - A*(Z (X*’y)) -

¢ ify=(0,1)
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» We can add extra normalization terms and different
criterion to try to minimize our prediction set size with
intuition on what our intervals prefer.

Overzealous

» We can even begin to compare the difficultly of predicting Normalization
given observation x as well, extending our terms to oy .

» Lim and Belotti showed that there is influence on the
efficiency of the prediction sets empirically from the choice
of normalization on the Ames housing data, but there is no
theoretical connection as of yet [1].
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One can then ask the question, why not add as much
normalization as possible? This is a fair idea until one
considers the normalization function

“ o0 if (X, y) c 2 (4) Malicious Non-conformity
g =
(xy) 0 otherwise

This would lead all of our prediction sets from Z being with
" <1 but all other future predictions will have #IM" = #Y.
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DEF: Let us have A(Z, z), where Z = Z;, - - - , Z, random
variables, we define A(z) when n — o

An(Z.2) B A2)

For example: Another nonconformity measure proposed by

Vovk [3] is the mean distance non-conformity, defined as (10) Definitons
AZ.2) = Az, 00 ) = x-S x [ 42, @
XEZy,

— A(z) = A(X".y) = IIx* — E[x € Z,]|

o) ellisuiding
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DEF: Let us have two non-conformity functions Ay and A¢, Ay
is asymptotically more efficient (AME) than Ay if for all ¢,

E[#T] < E[#7%] and # < £ for some ¢

For example if A has E[#%] = ¢ and A; has E[%] = &2,
then A, is AME than A;.
DEF: If A.(Z, z) = 222 is more efficient then all other

A= @ with A # A*, then A, is the asymptotically most
efficient non-conformity under A (AMEUA)

Definitions

For our results, in order to avoid approximating (4) we restrict
our o to a function of y, making our normalization o,.
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Let us consider Z = (X, Y)) drawn from a bounded space

S C R", these vectors can have the corresponding label yg
when X € Sy € S and can have label y; when X € S; € S. We
define the probability distribution of X, Y

f2(2) = fx v (X, ¥) = f(0)lo(X) lxes, + fr(1)fi(X)lxes, (6)

Where fy(x) and f;(x) can be any bounded probability
distribution and fy(x) is defined as

Yo ify=0
f — Assumptions
v() {y1 if y="1

where yp > 0 and y; > 0 with yp + y1 = 1.
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Theorem 1: Under (6), the normalized non-conformity function
AN js AME than ANN then Sy N Sy # @. If Sy and Sy are
disjoint then neither measure are AME.

Theorem 1
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Proof. (For notational simplicity, AV will be suppressed as A for this proof)

We see that as the number of draws is infinite for A we have the peisewise function A :
SpU Sy {0, 1,00}

0 ifwe Sy, «

1 ifee Sy,

2.5) A:SoUS = {0,100} A(z) = Alz.y) =<0 ifzgS,

oo ifxe Sy, x5

oo e g Sy,

We can now calculate the p, for each of our possible combinations

1 itreS, rgS.y=0
PlreS5iNS) ifresS, res
py =11 frg S, reS,y=1
0 ifre S, -
0 freg sy, r @
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As the func

ction of P, is not surjective the interval [0, 1], then there are intervals {or singletons)
of = where the expected interval size is unchanged. These intervals are:

{[0. Pl € Son &), [Pla € SonSi). 1), {1}}

Making our expected efficiency our our prediction sets, #I'' given an error rate ¢ as

E[£T3)e] = Z;n CP(#T = z|e) = P(#I7

x=()

Le) + 2 P(#T7 =20

(2.6) 0 ife=1

={PreS)+Plaes)—2PxeSns) ifPreSnS)<e<l
Plre S)+ Plaes)) ife< PleeSns)

Proof
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We can now consider A, as seen in (2.4). A, has form,

0 fzeS, ¢ S,y=0
q UHxely xeS,y=0
G fzesS, zeS,y=1
] fagS, v S,y=1
o ifreS;, v€S,y=1
o e @S, veS,y=0

(2.7) AL SyU Sy {0,600} Alz) = Az y) =

This leads to 2 different possibilities in the distribution of non-conformity scores. One where
¢y < <1 and another where ¢ < ¢y This makes E[#r;‘

where ¢, < ¢ and another where ¢, > ¢,.

] have two separate possibilities one

() Pro



When ¢, < ¢ we have

1 freS, ré&S5,y=0-
Pre S5 NS) freS, reb,y=0
P PlreSiNnSny=1) ifxeS, reS,y=
Y 1 xS, reS,y=1
1] ifref, r€5,y=1
0 frgs8, reS,y=0
= E[#I e
]
(2.8) _ | Plx e Sy)+ Plee S)—2P( e 5N5)
1 (x€ 80N S,y =0) << PlzeSns)
Pz € S) + Plz € 8) ife < PlreSgnS,y—0)

Maxwell Lovig

Proof



When ¢, > ¢ we have

P, 1
0
0
= B[#I
]
(29) _ JPle€So) + Pz € 81) —2P(x € 5" S1)
1

1
Plx e S1nS&)
Plre S5 nSpy=0)

Plzc S+ Plze5)

ifxe
ifxe
ifre
ifrdg
ifre
ifedSy, =

ife=1

if Plr e SpnSy)<e
if Ply=1,z€ SN <
ife<Ply=1x€5nS5)

Maxwell Lovig
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Theorem 2: For bounded binary classification, if we restrict o
to only a function of y

AZVN(Zv Z) - CJ/ANN(Z7 (X*ayf))
o 4z, 7)
V= UZ, st AZ\ 2,2) > )

where n > 0, AMNN js AMEF under ANN
@ Theorem 2
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NN oy #Z,, NN .
AZ2) = H{Z, st AZN\z2) > rj}A (2.2)
HE,HE

T HZ, w0 A(ZN\ 52 > gz (4)

#Z, N\ (#2506 AZ )=\ aw

_ Wi i AVN(z .

(% #z %

Asn — no, A':‘"N(Z, z) = P(f,l = .1,'!)(19(_(,‘ =y.x € SN .@”])’1‘4‘\"‘\"(2. z)
1

T Ply=ylr € S5

as such g‘(y,) < (,'('gJ) = Ply= 'g'}',l.l e 5,NS) = P[y = yj|.1 S ;Q;,HSI]

ANN (7 2)

Meaning P(#0. = 1|#) is at a maximum Ve when
min{s(y), s(p)} <e < Ple e Syl + Plr € 51) =2 Plr € 5N 51)
= 4:" * is more efficient then _4‘}"‘\"(2.-1}. when Aiv"‘" has the reversed inequality
(Le. when AN 22 AN

= f‘li” is the most efficient under (1.1)

Maxwell Lovig
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» Conformal predictions are a double-edged sword, they
offer a reduced level of assumptions but they are ripe for
unneeded complication and over-fitting which can create
falsified results in research.

» We need better guidance on how to choose a NC
measure. Under the well known nearest neighbor
non-conformity measure [3], we showed asymptotically,
normalization proposed by Papodopolus [2] produces
better prediction sets.

» Further research needs to be explores into comparing the
nearest neighbor measure (1) to the mean measure (5).
As well as showing if the relaxation or constriction of 7 in
(7) has an effect on the efficiency of prediction sets with
small n.

Conclusion
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