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What Features Do CNN'’s Learn

Figure: "96 convolutional kernels of size 11x11x3 learned by the first
convolutional layer on the 224x224x3 input images.” [KSH12]
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Figure: “Saliency maps generated using Grad-CAM, Grad-CAM++ and Smooth
Grad-CAM++ respectively”. [OSCW19]
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How Do We Justify What Is Learned

Image Perturbation (RISE / LIME)[RSG16, PDS18]

Ablation Studies:
@ Changing network features.
e Changing data input.

@ Comparison between models and data features on final prediction
methods.

Pros: Clean causal relationships.
Cons: Possibly very expensive, static in its comparison.
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Motivation For Different Approach

@ Going beyond static comparisons
e Is it possible to separate features learned at inference time?

e Study the significance of features as they emerge.
@ Model agnostic, the method of analysis should not rely on any

specific architecture.

© Low computational overhead
e | don't want to do additional inference for my visualizations.

e Nor do | want to calculate gradients.
e Wholistic picture.
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Dynamic Visualization

class Net(nn.Module):
def __init__(self, activation="relu"):

super().__init__()
self.convl = nn.Conv2d(3, 6, 5)
self.pooll = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.gap = nn.AdaptiveAvgPool2d((1,1))
self.fc = nn.Linear(16, 10)

# store activation function
activations = {
"relu": F.relu,
"sigmoid": torch.sigmoid,
"tanh": torch.tanh,

"swish": lambda x: x * torch.sigmoid(x),

"gelu": F.gelu,
"softplus": F.softplus
}

self.act = activations[activation]

Q.
]
3

forward(self, x):
self.act(self.convi(x))
self.pooll(x)
self.act(self.conv2(x))
self.gap(x)
torch.flatten(x, 1)
self.fc(x)

return x

MMM MMM

net = Net(activation="relu")

Max Lovig Yale University

CNN Dynamics

@ Training on CIFAR-10.

@ We will consider some
different activations in some
experiments.

@ We focus on a very small
network for today to
demonstrate the types of
visualizations.
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params = list(net.parameters())
epochs = 10
1r = .01

training_log = []
trained_images = 0  # acts as timestamp
for epoch in range(epochs):
for batch_idx, (inputs, labels, ids) in enumerate(trainloader):
outputs = net(inputs)
loss = F.cross_entropy(outputs, labels)

net.zero_grad()
loss.backward()

with torch.no_grad():
for p in params:
p = 1r * p.grad

# —--- record info --—-
batch_size = inputs.size(0)
preds = outputs.detach().cpu()

for idx, label, out in zip(ids, labels, preds):
training_log.append ({
"id": int(idx.item()), # true dataset ID
"timestamp": trained_images, # number of samples seen so far
"label": int(label.item()),
"output": out.tolist()
»

trained_images += batch_size



groups = [ [] for _ in range(10)]
for e in training_log:
groups[e["label"]].append(e)

window = 2000 # adjust as you like
smoothed = {}

for 1bl, entries in enumerate(groups):

# sort by timestamp (just in case)
entries = sorted(entries, key=lambda x: x["timestamp"])

timestamps = np.array([e["timestamp"] for e in entries])
outputs = np.array([e["output"] for e in entries]) # shape: (N, num_classes)

# --- moving average over time ——-
if len(outputs) >= window:
kernel = np.ones(window) / window
smooth_outputs = np.apply_along_axis(
lambda m: np.convolve(m, kernel, mode='valid'),
axis=0, arr=outputs
)
else:
smooth_outputs = outputs # too short, skip smoothing

smoothed[1b1] = {
"timestamps": timestamps[: len(smooth_outputs)],
"avg_outputs": smooth_outputs



Trajectory of smoothed outputs (softmaxed) Trajectory of smoothed outputs (linear)
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Figure: Left is the soft-maxed outputs while right is the read of the final linear
head. Crosses represent each use of 1000 training points.
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Trajectory of smoothed outputs

Trajectory of smoothed outputs
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Figure: Estimated probability of planes versus
linear.
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Trajectory of smoothed outputs Trajectory of smoothed outputs
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Figure: From upper left going clockwise: Relu, Sigmoid, Softplus, Swish




Trajectory of smoothed outputs (PCA projection) Trejectory of smoothed outputs (PCA projection)
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Figure: Relu network: Top row, 0 = 0.25,0.5; Bottom row, o = 1.




Ridge plot of P(cat) (blue) vs P(dog) (red)

Training time (binned)
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Figure: Relu Network: Cat In Blue Dog in Red; Histogram of cat category
probabilities of cat (blue) versus dog (red) prediction.



transform_green
transform_greenred

transforms.Compose([to_tensor, GreenOnly(), normalize])
transforms.Compose ([to_tensor, GreenRed(), normalizel)
transform_full = transforms.Compose([to_tensor, normalize])

phases = [
("Green-only", transform_green),
("Green+Red", transform_greenred),
("Full RGB", transform_full)



phase_epochs = epochs // len(phases)

for phase_idx, (phase_name, transform) in enumerate(phases):
print(f"\n=== Starting phase {phase_idx+1}: {phase_name} ==="

for epoch in range(phase_epochs) :
trainset = IndexedDataset(torchvision.datasets.CIFAR10(root='./data', train=True, transform=transform))
trainloader = torch.utils.data.Dataloader(trainset, batch_size=batch_size, shuffle=True, num_workers=0)

for batch_idx, (inputs, labels, ids) in enumerate(trainloader):

outputs = net(inputs)
loss = F.cross_entropy(outputs, labels)

net.zero_grad()
loss.backward()
with torch.no_grad():
for p in params:
p = 1r * p.grad

# track loss
loss_history.append(loss.item())
steps.append (step)

step += 1

# track outputs for later analysis
preds = outputs.detach().cpu()
for idx, label, out in zip(ids, labels, preds):
training_log.append ({
"id": int(idx.item()),
"timestamp": trained_images,
"label": int(label.item()),
"output": out.tolist()
H



Trajectory of Smoothed Outputs (PCA projection)
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Figure: Left, live ablation loss curve when adding more color channels. Right,
Dynamic barycenter of class prediction in a two dimensional PCA embedding.
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Figure: Training dynamics Gvér the three channel phases, starting from upper left
then going clockwise: Dog, Cat, Horse, Frog
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Figure: From upper left then going clock-wise: Car, Truck, Ship, Planes
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Not Just Classification
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Figure: A dynamic visualization of the network predictions for a regression task.
The ordering on the right-hand size (the continuous color band) is the true
solutions. Going from left to right is adding more channels to the underlying
image. As we go from left to right we we get “finer” corrections to model fit.
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Challenges / Future Roadblocks

Required book keeping when training, can’t be done at time of
inference.

@ Even simple models live in > 3 dimensions, so what embedding
reveals information and reduces noise.

@ Applying corrections when feature start emerging, how to intervene
for causal effect.

@ To what extent can this be applied while training instead of
post-training visualizations.
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How Can We Try To Analyze This Theoretically?



Data S is drawn from a mixture of Diracs over P atoms:

L 2
S= Z TpOu,s  Hp € RY.
pE[P]

Define a local patch:

Pij = (S(i—l)%+a,(1—1)%+b) a,beld/M]’



Two-Layer CNN Population Gradient Descent

Consider the very simple CNN student model,
ZV/ Z (d/M /@ij(s))
le[L] ije[M]
and its associated teacher,
KS) = 3 i Y of k) Ton(s)).
le[L*]  ije[M] ( / )

We consider population gradient descent limits on the loss:

£=E|3(FS) - /S
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Gradient flow on the population loss gives:

)

-t 2 (2

i = ~E|(F(S) —y(S»Za(“?O’,j”A'J};»)] .



Substituting y(S) and simplifying:

=>wi 32 2lo(GE) o (

(Ki, >) ©i(S )}

(d/M)? ) (d/M)?

{ )
)

)

“Swn 3 elo(G )« (i)

Similarly:

-5 5 wfo( ) o ()]

1% 0 yji* o j*
35 ol (k) ()]
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Order Parameter Reduction

Define the order parameters:

. 1 . 1
mj; = W“(/ 0i(S)), my; = W(K/,pij(s».
Then:
©ii(S
Z V/V/* Z { m/*,*J g’(m/ij) (d;sw;]
ig,i*j*
pii(S
S 3 E[ miy ) i) S
INRNE
vi= Z Z m/*f*J m//./ Z Z E[O mysjrjr )U(mlu)]-
Peigyie g I ig,ilg’
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Consider the following images as our data points:

OO X[ X|O| XXX X|O|O| XX XXX
O X|O|OX | X|O|X X[ X[X|O|X|OX|O
X|O|O|O|X|O XX X|O|O|O|X|OX|O
X[ X[X[O|X|O|O|X O X|O|O|X|O|0|X
X[ X[O|O|X | X|X|O O XX X|O|O XX
O|0X|X|X|O|0|O X[ X|O|X|O|X|O|O
X[ X[X[O|O|O XX O X|O|X|X|O|0|O
O|OX[OX|X|O]O O X|O[XX|O XX

Y(S)=#X—#0=4=4 Y(S)=#X—-#0=4=14

X with probability p
Shape ~ { ) p~ P

o with probability 1 — p

Max Lovig Yale University CNN Dynamics Physics x Data Science — 2025 28 /32



Because of the iid form of the above mentioned data, we can easily close

the PDE system in terms of order parameters.

=Y vvi Y Eifmpmglé(mi.,)o’ (mig)my,

I*€[L~] p,q€[P]
_ Z ViV Z Eq[rpmglo(my,)o ’(m/q)qu
I"e[L] p,q€[P]

Z 7 Z Er[mpmqlo (ml**p)a(m/q)

I*€[L*]  p,q€[P]

- Z v Z Er[mpmqlo (myp) o (myg) .

Ireft]  p.q€lP]

For the shape counting problem we assume that ¢(m) = 1{m = 1},
LI*=L=2=Pand v, =[1,-1].
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Simulations

Depending on the data composition of p and overlap between patches (if
they are not strictly x or o) we can have interesting solution dynamics.

Network Weight Evolution Network Weight Evolution
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Figure: Simulation of order parameters for kernel-to-signal correlations with a
evolving linear head initialized at v = [e, —¢] with [1, —1] = v* for the shape
counting problem assuming 0.8 overlap with Relu activation. Left, balanced data
set where p ~ Unif([0, 1]); Right, unbalanced data set where p ~ Direclet([2,1])
has right skew.
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Discussion

Questions & Discussion
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