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Three atom example, small step sizes “cancel out” randomness,
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Background

What is a two layer neural network?
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Given a function σ : R → R, weights θ = (θi)i∈[N] (θi ∈ RD), we define
a two layer neural network, ŷ(θ; x), as

ŷ(θ; x) =
1

N

N∑
i=1

ai · σ(⟨wi , x⟩+ bi)

A Two Layer Neural
Network

Or more generally,

ŷ(θ; x) =
1

N

N∑
i=1

σ∗(θi ; x)

Two common choices of σ are
ReLu(x) = x11x>0 or tanh(x).

The 2 Layer MLP strikes a balance between
richness and tractability. In general, how can such
a complex model work so well for many problems?



Background

Problem Setup

Model:

ŷ(x ; θ) =
1

N

N∑
i=1

σ∗(θi ; x)

Training: Stochastic gradient descent with batch size 1 and step size sk

θk+1
i = θki + 2sk(yk − ŷ(xk ; θ

k))∇θi
σ∗(xk ; θ

k
i )

Here we make a “one-pass assumption” meaning that each {(xk , yk)}k≥1 are
iid draws from P

Major Goal: Characterize the population risk

RN(θ) = E(x,y)[(y − ŷ(x ; θ)2]

as the number of neurons, N, goes to infinity.
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Background

The Large Width Limit

Most neural network analysis is of the asymptotic variety, in the sense that
we let the number of neurons go to infinity. Why do we do this?

It simplifies the analysis (concentration of measure, LLN)

Even in the limit, these models are still rich enough to be worth
studying.

Modern applications concern massive networks, which in a sense
should approach some large width limit. So by understanding what
happens for an infinite number of neurons can be relevant.
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Background

Lazy Training, [Misiakiewicz and Montanari, 2023]

Previous work has been done on a modification of our model

ŷ(θ; x) =
1√
N

N∑
i=1

σ∗(θi ; x)

This model enters a “lazy regime” where each θi has little action and thus
one can analyze the dynamics of a linear approximation called the neural
tangent kernel [Jacot et al., 2020].

Say we fix an activation σ∗ = σ(⟨θi , x⟩) and w∗ ∈ Sd−1(1), and generate n

data-points (xi , yi) ∈ Rd+1 with

xi ∼ U(Sd−1(
√
d)), yi = σ(⟨w∗, xi⟩) + εi , εi ∼ N(0, 1)

[Ghorbani et al., 2020] showed that if d ℓ << n << d ℓ+1, then as the number
of neurons N → ∞ we have

R(θt) ≈ ||P>ℓσ||2L2(Sd−1(
√

d)

Where P>ℓ is the projection onto ℓ degree polynomials. Wait...
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Background

Animation
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https://drive.google.com/file/d/1eYXMSYCW9BZyOcjh_f3s7FmkQknetunJ/view?usp=sharing


The Mean Field Limit: Heuristics

The Mean Field Limit: Heuristics
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The Mean Field Limit: Heuristics

The Mean Field Approach

Recall we are now going to use the “mean-field scaling” model

ŷ(θ; x) =
1

N

N∑
i=1

σ∗(θi ; x)

From [Chizat et al., 2020], we know that the model Jacobian, will evolve
during training unlike in the NTK model. This will hopefully represent the
“feature learning” phenomena we say in the previous animation.

Again, our goal is to characterize

RN(θ) = E(x,y)[(y − ŷ(x ; θ)2]

as the number of neurons N goes to infinity.
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The Mean Field Limit: Heuristics

Let’s decompose the population risk into the following 3 parts,

RN(θ) = E[(y − ŷ(x ; θ))2]

= E[y 2]− 2E[y ŷ(x ; θ)] + E[ŷ(x ; θ)2]

= E[y 2]− 2

N

N∑
i=1

E[yσ∗(x ; θi)] +
1

N2

N∑
i,j=1

E[σ∗(x ; θi)σ∗(x ; θj)]

= R# +
2

N

N∑
i=1

V (θi) +
1

N2

N∑
i,j=1

U(θi , θj)

Where:

R# := E [y 2]

V (θi) := −E [yσ∗(x ; θi)]

U(θi , θj) := E [σ∗(x ; θi)σ∗(x ; θj)]
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The Mean Field Limit: Heuristics

RN(θ) = R# +
2

N

N∑
i=1

V (θi) +
1

N2

N∑
i,j=1

U(θi , θj)

This formulation is invariant to the permutation of the neurons, so we can
equivalently write

RN(θ) = R# + 2E θ[V (θ)] + E θ,θ
′
[U(θi , θj)]

Where θ, θ′ are independently drawn from

1

N

N∑
i=1

δθi

This further motivates a risk on any probability measure ρ

R(ρ) = R# +

∫
V (θ)ρ(dθ) +

∫
U(θ, θ′)ρ(dθ)ρ(dθ′)
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The Mean Field Limit: Heuristics

Let ρ̂ be a uniform distribution on N atoms and ρ̂ =⇒ ρ.

We then see that,

∇θi
R(ρ̂) =

2

N
∇θi

V (θi) +
1

N2
∇θi

U(θi , θi) +
2

N2

∑
j ̸=i

∇θi
U(θi , θj)

= 2ρ̂(θi)

(
∇θi

V (θi) +
1

2N
∇θi

U(θi , θi) +
∑
j ̸=i

ρ̂(θj)∇θi
U(θi , θj)

)
N→∞→ 2ρ(θi)

(
∇θi

V (θi) +

∫
∇θi

U(θi , θ
′)ρ(θ′)

)
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The Mean Field Limit: Heuristics

3 Atom Example

Now let’s implement our stochastic gradient descent on a simple example
with 3 neurons in R2.

Figure: Here we have 3 atoms in R2 : θ1, θ2, θ3
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The Mean Field Limit: Heuristics

3 Atom Example

Now let’s implement our stochastic gradient descent on a simple example
with 3 neurons in R2.

Figure: Say that our random draw of (x , y) has each of these atoms to move
towards the blue patch. The blue vectors represent the influence of the external
field, which the average case should be something like ∇θV (θ).
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The Mean Field Limit: Heuristics

3 Atom Example

Now let’s implement our stochastic gradient descent on a simple example
with 3 neurons in R2.

Figure: We then have the mean-field repulsive effect between the atoms
represented by the red vectors. In the average case, this should look like
∇θ

∫
U(θ, θ′)ρ(θ′).
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The Mean Field Limit: Heuristics

3 Atom Example

Now let’s implement our stochastic gradient descent on a simple example
with 3 neurons in R2.

Figure: Adding the two vectors, we get our net direction of each particle.
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The Mean Field Limit: Heuristics

3 Atom Example

Now let’s implement our stochastic gradient descent on a simple example
with 3 neurons in R2.

Figure: We then weight this step according to our step size sk , let’s say sk ≈ 1/2.
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The Mean Field Limit: Heuristics

3 Atom Example

Now let’s implement our stochastic gradient descent on a simple example
with 3 neurons in R2.

Figure: We then finally take the step in the direction of this resized vector.
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The Mean Field Limit: Heuristics

Passing to the large width, small step-size limit

Assume that the step-size given by SGD is sk = εξ(kε) for some
ξ : R≥0 → R≥0.

As ε→ 0 and N → ∞ we would hope the randomness in SGD is “cancelled
out” by a small step-size. Meaning that over the course of many small
steps, we take the path the minimizes the average case risk for the limiting
model. This step is in the direction of,

−∇θΨ(θ; ρ) = −∇θ

(
V (θ) +

∫
U(θ, θ′)ρ(dθ′)

)
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The Mean Field Limit: Heuristics

Now let’s consider a single point Rd , θ∗. We have that the instantaneous
change in the mass on θ∗ at time t, ∂tθ∗, is

∂tθ∗ = Mass Entering at t −Mass Leaving at t

= (Mass at t) · (Rate Entering at t − Rate Leaving at t)

= (Mass at t) · (Step Size at t) · (Net in/out flow for θ∗ at t)

= 2ξ(t)∇θ,θ∗ · (ρt∇θΨ(θ; ρt))

Where ∇θ,θ∗ · (v(θ)) represents the divergence of the vector field v(θ) at θ∗.
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The Mean Field Limit: Heuristics

Distributional Dynamics

To recap, under the assumptions sk = εξ(kε) we heuristically expect the
empirical distribution ρ̂(N)

k = N−1
∑N

i=1 δθki
of the N neurons after k = t/ε

steps of SGD to have
ρ̂(N)

t/ε =⇒ ρt

as N → ∞ and ε→ 0. Here ρt evolves according to the PDE

∂tρt = 2ξ(t)∇θ · (ρt∇θΨ(θ; ρt))

Ψ(θ; ρ) = V (θ) +

∫
U(θ, θ′)ρ(θ′)

We call the solution to this PDE the Distributional Dynamics.

The remainder of the talk will be devoted to why such a representation is
helpful and a proof of this convergence.
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Results

Results
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Results

Assumptions

t 7→ ξ(t) is the instantaneous step-size at time t, we assume it is
absolutely bounded by K and is K -Lipschitz.

(x , θ) 7→ σ∗(x ; θ) is absolutely bounded by K and whose gradient has a
sub-Gaussian norm ||∇θσ∗(X , θ)||ψ2 ≤ K . We also have the labels yk
are absolutely bounded.

We have that ∇θV (θ) and ∇θ1
U(θ1, θ2) are also absolutely bounded by

K and K -Lipschitz.

We also consider sequences (N, εN) such that
N → ∞, εN → 0,N/ log(N/εN) → ∞ and εN log(N/εN) → 0
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Results

Theorem (Noiseless Dynamics)

Under the assumptions of the previous slide, consider SGD with
initialization θi

iid∼ ρ0 with step-size sk = εξ(kε). For t ≥ 0, let ρt be the
distributional dynamics. Then for fixed t we have ρ̂(N)

t =⇒ ρt almost
surely along the sequence (N, εN).

Moreover, for all test functions f : RD → R which are absolutely bounded
by K and K -Lipschitz, there exists a K dependent constant C such that

sup
k∈[0,T/ε]∩N

| 1
N

N∑
i=1

f (θki )−
∫

f (θ)ρkε(dθ)| ≤ CeCTerrN,D(z)

sup
k∈[0,T/ε]∩N

|Rn(θ
k)− R(ρkε)| ≤ CeCTerrN,D(z)

with probability 1− e−z2 and

errN,D(z) :=
√

(1/N) ∨ εN · [
√

D + log(N/εN) + z ]
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Results

Theorem ((Informal) Noisy Dynamics)

Consider a noisy variant of SGD:

θk+1
i = (1− 2λsk)θ

k
i + 2sk(yk − ŷ(xk ; θ

k))∇θi
σ∗(xk ; θ

k
i ) +

√
2sk/βg

k
i

We can get a result similar to the noiseless theorem with noisy
distributional dynamics, specifically we can get the same error bound with
the following PDE

∂tρt = 2ξ(t)∇θ · (ρt∇θΨλ(θ; ρt)) + 2ξ(t)β−1∆θρt

Ψλ(θ; ρ) = V (θ) +

∫
U(θ, θ′)ρ(θ′) + (λ/2)||θ||22

Where ∆θ is the Laplacian.

Maxwell Lovig Mean Field Neural Networks June 26, 2025 21 / 44



Results

Theorem ((Informal) Noiseless Convergence)

We know that any fixed point ρ has the following property

supp(ρ) ⊂ {θ : ∇θΨ(θ; ρ) = 0}

Further under assumptions that the initialization ρ0 is not too far from a
point θ∗ where the Hessian H(ρ) = ∇2

θΨ(θ; ρ) has λmin(H(δθ∗)) ≥ 0, then
ρt =⇒ δθ∗ exponentially fast.
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Results

Theorem ((Informal) Noisy Convergence)

The (Noisy) distributional dynamics has a fixed point of the form,

ρ∗(θ) =
1

Z (β)
e−βΨλ(θ;ρ∗)

This fixed point is the global minimizer of the free energy. We have that

ρt =⇒ ρ∗

as t → ∞. Moreover, this solution has

R(ρ∗) ≤ inf
θ∈RN×D

RN(θ) +
CD

β

Where C is some constant dependent on the absolute/gradient bounds of
V and U. The convergence to this fix point is N (the number of neurons)
independent.
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Results

Applications (Informal)

For application type results, they choose a distribution on (x , y) and
analyze the distributional dynamics. For example

With probability 1/2 :y = 1, x ∼ N(0, (1 + ∆)2Id)

With probability 1/2 :y = −1, x ∼ N(0, (1−∆)2Id)

If ρ0 is spherically symmetric then by the rotational invariance of isotropic
Gaussian we can reduce the infinite dimensional distributional dynamics
down to a PDE of the distribution ρ̄t with one parameter, r = ||w ||2, the
norm of the weights. We then have the evolution

∂t ρ̄t = 2ξ(t) ∂r(ρ̄tψ(r ; ρ̄t))

Where ψ is derived from Ψ under our rotational invariance. They then go
on to show that SGD preforms well for this problem by analyzing this PDE.
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Results

Theorem (Noiseless Dynamics)

Consider SGD with initialization θi
iid∼ ρ0 with step-size sk = εξ(kε). For

t ≥ 0, let ρt be the distributional dynamics. Then for fixed t we have
ρ̂(N)
t =⇒ ρt almost surely along the sequence (N, εN).

Moreover, for all test functions f : RD → R which are absolutely bounded
by K and K -Lipschitz, there exists a K dependent constant C such that

sup
k∈[0,T/ε]∩N

| 1
N

N∑
i=1

f (θki )−
∫

f (θ)ρkε(dθ)| ≤ CeCTerrN,D(z)

sup
k∈[0,T/ε]∩N

|Rn(θ
k)− R(ρkε)| ≤ CeCTerrN,D(z)

with probability 1− e−z2 and

errN,D(z) :=
√

(1/N) ∨ εN · [
√

D + log(N/εN) + z ]

Maxwell Lovig Mean Field Neural Networks June 26, 2025 25 / 44



Results

Proof of The Theorem

Definition

Consider trajectories (θ̄i)i∈[N],t∈R≥0
generated according to the following

non-linear dynamics (where PX denotes the law of random variable X ),

θ̄ti = θ0i − 2

∫ t

0

ξ(s)∇Ψ(θ̄si ; ρs) ds

ρs = Pθ̄s
i

with initialization θ̄0i = θ0i
iid∼ ρ0. This is interpreted as an evolution of the

law of the trajectory of θ̄ti . Under the assumptions of our theorem, we know
these non-linear dynamics have a unique solution ρt [Sznitman, 1991].

Also, for the remainder of the talk, we define a constant K that is
dependent on our assumptions and may change value for position to
position (for example K 2 = K). We also drop the N subscript from εN .
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Results

High Level Sketch

I will present the proof for test function f , the proof for RN is similar but
slightly more technical.

sup
k∈[0,T/ε]∩N

| 1
N

N∑
i=1

f (θki )−
∫

f (θ)ρkε(dθ)|

≤ sup
k∈[0,T/ε]∩N

| 1
N

N∑
i=1

f (θki )−
1

N

N∑
i=1

f (θ̄ki )|+ | 1
N

N∑
i=1

f (θ̄ki )−
∫

f (θ)ρkε(dθ)|

≤ sup
k∈[0,T/ε]∩N

max
i≤N

|f (θki )− f (θ̄ki )|+ | 1
N

N∑
i=1

f (θ̄ki )− Eρ0

[
1

N

N∑
i=1

f (θ̄ki )

]
|

≤ K sup
k∈[0,T/ε]∩N

max
i≤N

||θki − θ̄kεi ||2 + | 1
N

N∑
i=1

f (θ̄ki )− Eρ0

[
1

N

N∑
i=1

f (θ̄ki )

]
|
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Results

sup
k∈[0,T/ε]∩N

| 1
N

N∑
i=1

f (θki )−
∫

f (θ)ρkε(dθ)|

≤ K sup
k∈[0,T/ε]∩N

max
i≤N

||θki − θ̄kεi ||2︸ ︷︷ ︸
I

+ | 1
N

N∑
i=1

f (θ̄ki )− E

[
1

N

N∑
i=1

f (θ̄ki )

]
|︸ ︷︷ ︸

II

If we are able to show that both I and II are bounded by

KeKTerrN,D(z)

With probability 1− e−z2 then we are done.

Moreover, since we would show this bound for any 1−Lipschitz f bounded
by 1 absolutely, we would then have that ρ̂(N)

⌊k/ε⌋ =⇒ ρt along any sequence
(N, ε) such that the above bound goes to 0 in the limit.
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Results

Analysis of II

Since we have that f is bounded absolutely by K then we have that
ϕk(θ̄1, · · · , θ̄N) = 1

N

∑N

i=1 f (θ̄
k
i ) changes by at most K/N when perturbing a

coordinate θ̄i . Using McDiarmind’s Inequality we have

P
(
ϕk(θ̄1, · · · , θ̄N)− E[ϕk(θ̄1, · · · , θ̄N)] ≥

K√
2
(1/

√
N)(1 + z)

)
≤ 2 exp

(
−2

N

K 2
(
K√
2
(1/

√
N)(1 + z))2

)
≤ 2 exp(−1− z2)

≤ e−z2

Thus, by a union bound, we have that

(II ) ≤ K√
2
(1/

√
N)(
√
1 + log(T/ε ∨ 1) + z)

≤ KeKTerrN,D(z)

with probability 1− e−z2 .
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Results

Main Technical Lemma

Now we need just show the same upper bound for
maxi≤N supk∈[0,T/ε]∩N ||θki − θ̄kε||2, unfortunately this is much more involved.

Lemma

Under the assumptions of the Theorem, there exists a constant K such
that for any T ≥ 0, we have:

max
i≤N

sup
k∈[0,T/ε]∩N

||θki − θ̄kε||2

≤ KeKT
√
(1/N) ∨ ε

[√
D + log(N(T/ε ∨ 1)) + z

]
with probability 1− e−z2 .
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Results

Proof of the Technical Lemma

Before we go into proving this Lemma, we define the following short-hands:

Fi(θ; zk) = (yk − ŷ(xk ; θ))∇θi
σ∗(xk ; θ)

G (θ; ρ) = −∇Ψ(θ; ρ) = −∇V (θ)−
∫

∇θU(θ, θ′)ρ(dθ′)

[t] = ε⌊t/ε⌋

One can see that G is both bounded and Lipschitz in θ and ρ.
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Results

We now can rewrite SGD as

θk+1
i = θki + 2εξ(kε)Fi(θ

k
i ; zk+1),

unrolling this definition in θki inductively gives

θk+1
i = θ0i + 2ε

k−1∑
ℓ=0

ξ(ℓε)Fi(θ
l
i ; zl+1).

Compare this to the non-linear dynamics

θ̄i
t
= θ0i + 2

∫ t

0

ξ(s)G (θ̄si ; ρs)) ds
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Results

The proof follows a propagation of chaos argument [Sznitman, 1991]:

||θti − θ̄ti ||2 = 2

∣∣∣∣∣∣∣∣ ∫ t

0

ξ(s)G (θ̄si ; ρs) ds − ε

t/ε−1∑
k=1

ξ(kε)Fi(θ
k ; zk+1)

∣∣∣∣∣∣∣∣
2

≤ 2

∫ t

0

∣∣∣∣∣∣∣∣ξ(s)G (θ̄si ; ρs)− ξ([s])G (θ̄si ; ρs)

∣∣∣∣∣∣∣∣
2

ds︸ ︷︷ ︸
Ei
1
(t)

+ 2

∫ t

0

∣∣∣∣∣∣∣∣ξ([s])G (θ̄si ; ρs)− ξ([s])G (θ⌊s/ε⌋i ; ρ[s])

∣∣∣∣∣∣∣∣
2

ds︸ ︷︷ ︸
Ei
2
(t)

+ 2

∣∣∣∣∣∣∣∣ε t/ε−1∑
k=1

ξ(kε)
[
Fi(θ

k ; zk+1)− G (θki ; ρkε)
] ∣∣∣∣∣∣∣∣

2︸ ︷︷ ︸
Ei
3
(t)
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Results

E i
1(t) =

∫ t

0

∣∣∣∣∣∣∣∣ξ(s)G (θ̄si ; ρs)− ξ([s])G (θ̄si ; ρs)

∣∣∣∣∣∣∣∣
2

ds

E i
1(t) ≤ t sup

s∈[0,t]

∣∣∣∣∣∣∣∣ξ(s)G (θ̄si ; ρs)− ξ([s])G (θ̄si ; ρs)

∣∣∣∣∣∣∣∣
2

(1)

+

∣∣∣∣∣∣∣∣ξ([s])G (θ̄si ; ρs)− ξ([s])G (θ̄[s]i ; ρs)

∣∣∣∣∣∣∣∣
2

(2)

+

∣∣∣∣∣∣∣∣ξ([s])G (θ̄[s]i ; ρs)− ξ([s])G (θ̄[s]i ; ρ[s])

∣∣∣∣∣∣∣∣
2

(3)

≤ Ktε

Where: (1) comes from ξ Lipschitz, |s − [s]| ≤ ε and ||G ||∞ ≤ C1. (2) and
(3) follow from similar reasoning depending on what variable is different in
their respective lines.
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Results

E i
2(t) =

∫ t

0

∣∣∣∣∣∣∣∣ξ([s])G (θ̄si ; ρs)− ξ([s])G (θ
⌊s/ε⌋
i ; ρ[s])

∣∣∣∣∣∣∣∣
2

ds

E i
2(t) ≤

∫ t

0

||ξ([s])G (θ̄[s]i ; ρ[s])− ξ([s])G (θ⌊s/ε⌋i ; ρ[s])||2 ds

≤
∫ t

0

|ξ([s])| · ||G (θ̄[s]i ; ρ[s])− G (θ⌊s/ε⌋i ; ρ[s])||2 ds

≤ K

∫ t

0

||G (θ̄[s]i ; ρ[s])− G (θ⌊s/ε⌋i ; ρ[s])||2 ds

≤ K

∫ t

0

||θ̄[s]i − θ⌊s/ε⌋i ||2 ds

Here we have used the Lipschitz properties of G and the boundedness of ξ.
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Results

E i
3(t) =

∣∣∣∣∣∣∣∣ε∑t/ε−1
k=1 ξ(kε)

[
Fi(θ

k ; zk+1)− G (θki ; ρkε)
] ∣∣∣∣∣∣∣∣

2

We bound E i
3(t) in the following way:

E i
3(t) ≤

K

N

N∑
j=1

∫ t

0

||θ⌊s/ε⌋j − θ̄[s]j ||2

+ K (
√
t ∨ t)

√
(1/N) ∨ ε(

√
D + log(N(t/ε ∨ 1)) + z) +

Kt

N

with probability 1− e−z2 . This bound comes from conditioning on the
filtration Fk created by (x1, y1), · · · , (xk , yk). This works since

E [Fi(θ
k ; zk+1)|Fk ] = G (θki ; ρ̂

(N)
k )

As we know that ||∇θσ∗(X ; θi)||ψ2 and |yk | is bounded then we have that
the martingale difference Fi(θ

k ; zk+1)− E [Fi(θ
k ; zk+1)|Fk ] is sub-Gaussian, a

mixture of Azuma-Hoeffding and using the Lipschitz and boundedness of
G and F gives the stated bound.
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Results

To prove the Lemma, we now define the random variable

∆(t;N, ε) = max
i≤N

max
k∈[0,t/ε]∩N

||θki − θ̄kεi ||2

We can then get the following bound with probability 1− e−z2 .

∆(t;N, ε) ≤ K

∫ t

0

∆(s;N, ε) ds + Ktε+
Kt

N

+ K (
√
t ∨ t)

√
(1/N) ∨ ε(

√
D + log(N(t/ε ∨ 1)) + z)

(4)
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Results

We now invoke Gronwall’s Inequality, which states that when

u(t) ≤ α(t) +

∫ t

0

β(s)u(s) ds

then one has
u(t) ≤ α(t)e

∫ t
0 β(s) ds

on line (4) with β(s) = K (and thus
∫ t

0
1 ds = Kt) we have that

∆(t;N, ε) ≤ KeKt(tε+
1

N
+ (

√
t ∨ t)

√
(1/N) ∨ ε(

√
D + log(N(t/ε ∨ 1)) + z))

The claim follows by absorbing t pre-factors into K and recognizing that√
ε and N−1/2 vanish slower than ε and N−1. Meaning that,

∆(t;N, ε) = max
i≤N

max
k∈[0,t/ε]∩N

||θki − θ̄kεi ||2

≤ KeKT
√
(1/N) ∨ ε

[√
D + log(N(T/ε ∨ 1)) + z

]
≤ KeKTerrN,D(z)
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What’s Next?
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What’s Next?

Future Directions 1

Other Possible Infinite Width Limits: There have been two approaches
to taking on this problem,

Trying to Fix NTK to give it some type of feature learning, an
example of which is the Neural Tangent Hierarchy.
[Huang and Yau, 2019]

Classifying all possible infinite width limits, even for general
optimization procedures. This was done in [Yang and Littwin, 2023]
albeit with a non-vanishing sk .
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What’s Next?

Future Directions 2

Applications to Specific Problems

A lot of work has been done on the k-index (or k-ridge) problem. An
example of such an analysis was done in [Abbe et al., 2023]

Expanding to more general function classes, is there an exact
characterization of what SGD can and can’t learn? An analysis of
sparse functions mapping to the hypercube was done by
[Abbe et al., 2022] and could be further extended.

There is also the possibility of statements related to optimal
hyperparameters like drop-out or batch-normalization, which would
require extensions on the mean field framework to analyze.
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What’s Next?

Future Directions 3

Going Beyond 2 Layer MLP’s

There have been efforts to establish a mean field approach to
attention, specifically to study the clustering behavior of the
embedding from repeated single-head attention
[Geshkovski et al., 2024].

In general, there have been steps to try to extend the mean field
model to multi-layer MLP’s and other architectures such as
convolutional layers, RNN’s, etc. An example of such analysis can be
found in [Yang and Littwin, 2023] and [Nguyen and Pham, 2023].
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