A Survey of Bayes Methods
in R

Maxwell Lovig

June 24, 2025

2l | j B

CRAN Task View: Bayesian Inference

Applid researchers interested in Bayesian statitis are increasingly atracted to R because ofthe ease of which one can code algorih le from posterior well number o packages contributed to the Comprehensive R Archive Network
(CRAN) that provide tool for Bayesian inference. Thistask view catalogs these tools. In this task view, we divide those packages into four groups based on the scope and focus of the packages. We first review R packagesthat provide Bayesian estimation tools for a wide range
of models. We then discuss packages that address specific Bayesian models orspecialized methods in Bayesian statstics. This s folowed by a description of packages used for post-estimaion analyss. Finlly, we review packages that link R to other Bayesian sampling engines
such as JAGS, OpenBl WinBUGS, Stan, and TensorFlow.

General Purpose Model-Fitting Packages
+ The arm package contains R functions for Bayesian inference using Im, glm, mer and polr objects.

« BAC(

is an R bundle for Bayesian analysis of random functions. BACCO contains three sub-packages: emulator,calibrator, and approximator, that perform Bayesian emulation and calibration of compuer programs.

« bayesforecast provides various functions for Bayesian time series analysis using *Stan’ for full Bayesian inference. A wide range of distrbutions and models are supported, allowing users o fit Seasonal ARIMA, ARIMAX, Dynamic Harmonic Regession, GARCH, t-
student innovation GARCH models, asymmetric GARCH, Random Walks, stochastic volatilty models for univariate time series.

+ bayesm provides R function for Bayesian inference for various idely used in marketing and mi . The models include linear regression models, multinomiallogit, multinomial probit, multivariae probit, multvariate mixture of normals (including
clustering), density estimation using finite mixtures of normals as wel as irichlet Process priors, hierarchicallinear models,hierarchical multinomial logt, hierarchical negative binomial regression models, and linear nstrumenl variable models.

.)is an R package for general MCMC and SMC samplers, as well as plot and diagnosti functions for Bayesian statistics, with a paricular focus on calibrating complex system models. Implemented samplers include various Metropolis
'MCMC variants (including adaptive and/or delayed rejection MH), the T-walk, two differental evolution MCMC, two DREAM MCMC, and a sequential Monte Carlo (SMC) paricl filtr.

placesDemon seeks to provide a complte Bayesian environmen, inluding numerous MCMC algorithms, Laplace Approximation with muliple jon algorithms, scores o examples, dozens of addiional probabily distbutions, numerous MCMC diagnostics,
Bayes factors,posterior predictive checks, a variety of plos,eliciation, parameter and varizble importance, and numerous addiional uility functions

 loa provides functions for eficient approximate leave-one-out cross-validation (LOO) for Bayesian models using Markov chain Monte Carlo. The approximation uses importance PSIS), new procedure for regularizing importance weights. As
abyproductof the calculations, looalso provides standard errors for estimated predicti d for the comparison of predicti ‘models. The package also provides methods for and other model weighting techniques to average Bayesian
predicive distributions

+ MCMCpack provides model-specific Markov chain Monte Carlo (MCMC) algorithms for wide range of models commonly used inthe social and behavioral sciences. It contains R functions to fit a number of regression models linear regression, logi, ordinal probi,
probit, Poisson regression, tc., measurement models (item response theory and factor models), changepoint models (inear regression, binary probi, rdinal probit, Poisson, panel), and modes for ecological inference. It also contains a generic Metropolis sampler that can
be used to fit arbitrary models.

+ The meme package consists of an R function for a random-walk Metropolis algorithm for a continuous random vector.

+ The nimble package provides a general MCMC system that alows customizable MCMC for models witten in the BUGSJAGS modellanguage. Users can choose samplers and wite new samplers. Models and samplers e automatically compiled via generated C++. The
package also supports other methods such as particle fitering or whatever uses write in it algorithm language.

Application-Specific Packages
ANOVA

+ bayesanova provides a Bayesian version of the analysis of variance based on a three-component Gaussian mixture for which a Gibbs sampler produces posterior draws.
+ AovBay provides the classical analysis of variance, the nonparametrc equivalent of Kruskal Wallis, and the Bayesian approach.

Bayes factor/nodel conparison/Bayesian model averaging

+ bain computes approximated adjusted fractional Bayes factors for equality, inequalit, and about equalty constrained hypotheses.

+ BayesFactor provides a suit of function for computing various Bayes factrs for simple designs, including contingency tables, one- an two-sample designs, one-way designs, general ANOVA desigas, and lnear regression

+ Bayes\VarSel calculate Bayes factors inlinear models and then to provide a formal Bayesian answer o testing and variable slection problerns

+ The BMA package has functions for Bayesian model averaging for linear models, generalized linear models, and survival models. The complementary package ensembleBMA uses the BMA package to create probabilstic forecasts of ensembles using a mixture of normal
distributions.

+ BMS is Bayesian Model Averaging library for linear models with a wide choice of jors. Built-in priors fent priors(fxed, flexible and hyper-g priors), and 5 kinds of model prors

 bridgesampling provides R functions for estimating marginal likelihoods, Bayes factors, posterior madel probabiliie, and normaizing constants in general,via different versions of bridge sampling (Meng and Wong, 1996).

+ RoBMA implements Bayesian model-averaging for meta-analytic models, including models correctin for publication bias.

Bayesian tree models

 dbars fits Bayesian additve regression trees (Chipman, George, and McCulloch 2010).
+ The bartBMA offers functions for Bayesian additive regression tres using Bayesian model averaging
+ bartCause contains a variety of methods to generate typical causal inference estimates using Bayesian Additive Regression Trees (BART) as the underlying regression model (ill 2012).

JAGS

o Developed By Martyn Plummer
o Uses Gibbs sampler

o Interfaces with R using rjags and R2Jags

Laplace’'s Demon

o Created by Byron Hall/Statiscat,
maintained by Henrik Singmann

o “Dealers Choice” (HARM, Metropolis
within Gibbs, CHARM, etc.)

o Written in R/Ccp

Pick any number you like, but there’s only

one number appropriate for a demon'!

> set.seed(666)

!Demonic references are used only to add flavor to the
software and its use, and in no way endorses beliefs in demons.
This specific pseudo-random seed is often referred to, jokingly,
as the ‘demon seed’

Stan

o Started by Andrew Gelman, 54 current
employees

o Uses Hamiltonian Monte Carlo

o Interfaces with R using rstan

Objective Bayes

Iris Dataset
x = sepal length
c = name of flower (1 = setosa, 2 = versicolor, 3 = viginica)

i o< 1 (i € {1,2,3})

, ()
o; X — O'I'OC_
o o2

xi~ N(uep o) GeA{1,---,N})

Iris: Stan

// In this example we have a vector of responses y with mixed grou
// We keep track of which responses are for which group by c
data {

int N;

real y[N];

int c[N];

parameters {
real mu[3];
real <lower=0> sigma [3];

}

model {
for (i in 1:3){
target += —1 x log(sigmal[i]);
// Jeffries prior in the logged form

for (i in 1:N){
y[i] = normal(mu[c[i]], sigma[c[i]]);

Iris: Jags

model {
Priors
for (i in 1:3)
mu[i] ~ dnorm(0,.0001)
Cannot use jeffries prior lol

}

for (i in 1:3)

sigma[i] ~ dgamma(.001, .001)

Almost Jeffries Prior

taul[i] <— 1/(sigma[i] * sigmal[i])
Jags uses the precision

parameterizaion for Normal

Likelihood
for (i in 1:N)
y[i] 7 dnorm(muf[c[i]], tau[c[i]])

Aside

Published: 20 August 2013

Extending JAGS: A tutorial on adding custom
distributions to JAGS (with a diffusion model
example)

Dominik Wabersich & Joachim Vandekerckhove

Behavior Research Methods 46, 15-28 (2014) | Cite this article

Iris: Laplaces Demon

Model <— function (parm, Data) {
Parameters
mu <— parm[1:3]
sigma <— exp(parm[4:6])
Recall we must reparameterize log.sigma

Priors
sigma. prior <— —2 % log(sigma)

Likelihood and Posterior Predictivwe
LL <— 0
pp <— rep(0,length(Data$C))

for (i in 1l:length(Data$C)){
LL <— LL + dnorm(Data$y[i], mu[Data$C[i]],
sigma [Data$C[i]], log=TRUE)
pp[i] <— rnorm (1, mu[Data$C[i]], sigma[Data$C[i]])

Calculate the Posterior
LP <— LL + sum(sigma. prior)

Modelout <— list (LP=LP, Dev=—2xLL, Monitor=c(LP),
yhat=pp, parm=parm)
return (Modelout) }

Iris: Results

Stan
r —T T L T
4 5 [?
JAGS
r T T T
4 5 [?

Laplaces Demon, Default

L -

Laplaces Demon, CHARM

- .-

Hierarchical Bayes

Jay's Dataset

x = Final enrollment, n = Maximum enrollment
¢ = class identifier (15 = 230, 44 = 662)
ie{l,---,49} and j € {1,--- | N}.

a o<1

g ox 1

Q/O(B(Ck,ﬁ)
1

)\,’ X —=
VA
Xj ~ Bi(nj, QC[I])

nj ~ Poi()\cm)

Student: Stan

data {
int<lower = 0> N; int<lower = 0> M;
int x[N]; int n[N]; int c[N];

parameters {
real<lower
real<lower

}

model {
for (i in 1:M){
theta[i] ~ beta(alpha, beta);
// The hierarchical bit is here
target += —.5 x log(lambda[i]);
// Jeffries for lambda

0> lambda[M]; real<lower = 0> alpha;
0> beta; real<lower = 0, upper = 1> theta[M];

for (i in 1:N){
n[i] ~ poisson(lambda[c[i]]);
x[i] binomial(n[i], theta[c[i]]);

}
}

Student: JAGS

model {
Priors
alpha ~ dunif(0,1000)
beta ~ dunif(0,1000)

for (i in 1:M)
lambda[i] ~ dgamma(.5, .0001)
theta[i] ~ dbeta(alpha, beta)
Here is the hierarchical bit

}

Likelihood

for (i in 1:N) {
n[i] ~ dpois(lambdafc[i]])
x[i] © dbin(theta[c[i]], n[i])

Student: Laplace’s Demon

Model <— function (parm, Data) {
#H## Parameters
parm[99] <— alpha <— interval(parm[99], a=1)
parm[100] <— beta <— interval(parm[100], a=1)

parm[1:49] <— pi <— interval(parm[1:49], 0.001, 0.999)
parm[50:98] <— lambda <— interval(parm[50:98], a = 0)
Log(Prior Densities)
pi.prior <— dbeta(pi, alpha, beta, log=TRUE)
lambda. prior <— dgamma(lambda, 1, .0001,
log = TRUE)
Log—Likelihood
LL <— 0
for (i in 1l:length(Data$y)){
LL <— LL + dpois(Data$n[i], lambda[Data$c[i]], log = TRUE)
LL <— LL + dbinom(Data$y[i], Data$n[i],

pi[Data$c[i]],
log = TRUE)

Log—Posterior

LP <— LL + sum(pi.prior) + sum(lambda. prior)

Modelout <— list (LP=LP, Dev=—2xLL, Monitor=LP,
yhat=rbinom (length (Data$n), Data$pi),
parm=parm)

return (Modelout)}

Student: S&DS 230

Stan, lambda[15] theta[15] beta alpha
= = <
g 2 F] 2
8 2 8 E
g
=
g 2
2 g g g
[| R e s e e | R e] < [|
200 220 240 260 084 088 092 iz 3 4 5 5 0 15 20
JAGS, lambda[15] theta[15] beta alpha
g g s g
B = g E
8]
g
N E g E
< [e | ° [e e ° [< [e e
200 220 240 260 0.88 088 090 092 12 3 4 5 5 10 15 20
Laplaces Demon, lambda[15] theta[15] beta alpha
g
s g g g
= 3 2 =
g g g g
° ° L ° T 1 ° [s e B |

224 226 228 230 086 080 1214 16 18 25 35 45 55

Student: S&DS 662

1500

500

1500

500

600 1000

0 200

Stan, lambdiaf44] thetalea) beta alpha
. 2] H
& <] H
R 04 05 06 07 08 03 10 S s o0 o6 o»
JAGS, lambda[44] theta[44] beta alpha
1 g4 E
e £ H
s g 4 E
T T T T T 1 °7r T T T T 1 °° T 1 ° T T T 1
s 0w om0 % 04 05 08 07 08 03 10 Vo s s o0 ow o
Laplaces Demon, lambdal#4] thetalea) beta alpha
“ : Aﬂlﬂmﬂﬂﬂ:;
[! °Tr T T T T 1 r T T T T 1 ° T T 1
R 05 08 o1 o8 03 10 o ow oo 25w a4

Speed

Isurance Dataset (Kaggle)
x = 9 predictor columns (age, sex, location, etc.)

y = Insurance claim amount
je{l,--- N}

3 ~ N(0, 101
o? ~ G(1,1)
Yi~ N()(Jﬂ?U)

Insurance: Stan

data {
int<lower=0> N;
int<lower=0> P
matrix [N, P] x;
vector [N] vy;

}

parameters {
vector [P] beta;
real<lower=0> sigma;

}

model {
beta ~ normal (0,10);
sigma ~ gamma(1l,1);

y ~ normal(x * beta, sigma);

Insurance:

model {
Priors
for (i in 1:P){
beta[i] " dnorm(0,1/100)

sigma ~ dgamma(1,1)
tau = 1 / (sigma)

Likelihood

mu = x %% beta

for (i in 1l:length(y)){
y[i] = dnorm(mu[i], tau)

Insurance:

Model <— function(parm, Data) {
#H## Parameters
beta <— parm[Data$pos. beta]
parm[Data$pos.sigma] <— sigma <—

interval (parm[Data$pos.sigma], 1e—100)
Log—Prior

beta.prior <— sum(dnormv(beta, 0, 100, log=TRUE))
sigma. prior <— dgamma(sigma, 1, 1, log=TRUE)

Log—Likelihood
mu <— tcrossprod (Data$x, t(beta))
LL <— sum(dnorm(Data$y, mu, sigma, log=TRUE))

Log—Posterior
LP <— LL + beta.prior + sigma.prior
Modelout <— list (LP=LP, Dev=—2xLL, Monitor=LP,

yhat=rnorm(length(mu), mu, sigma), parm=parm)
return (Modelout)

Insurance:

test replications elopsed relotive user.self sys.self

2 JAGS
3 LD, CHARM
4 LD, HARM

1 Stan

5 133.97%
5 467.371
5 43,653
5 1e9.697

3869
9.332
1.0
3_B&Y

138.279
393 . 246
41.533
lob.614

1.832
11.260
1.547
1.641

